Log in
Atrial fibrillation (AF), a form of cardiac rhythm disturbance, significantly increases risk of stroke, heart failure and sudden death. The Division of Imaging Sciences and Biomedical Engineering at King's College London and Philips Healthcare collaborated to develop a platform for guiding cardiovascular catheterisation procedures in patients with AF. The EP Navigator is a commercial, clinical product that integrates pre-acquired magnetic resonance and computer tomography images with real-time X-ray fluoroscopy. This enhances visualisation, thereby reducing procedure time and the patient's exposure to radiation. The EP Navigator is used in around 350 out of 2,000 centres worldwide that carry out ablation therapies for cardiac arrhythmias, despite strong competition.
Radiation physicists at the University of Surrey developed a unique X-ray imaging technology for high-speed real-time tomography (RTT) during 1997 to 2005. The originating research developed new X-ray methods for tomographic imaging of multiphase flow in pipes. RTT was then applied to security X-ray imaging, specifically the high-speed screening of aircraft passenger baggage. As a direct result of the research, a spin-out company from the University, CXR Ltd, was formed, and it was later acquired by Rapiscan Systems.
Surrey's imaging technology is now approved for use for automated explosives detection in the European aviation sector. In 2009, a prototype high-speed baggage system was trialled at Manchester Airport, which resulted in certification in 2012. The research has made a significant economic impact by leading to technology that created jobs in a purpose-built factory.
Researchers at the University of Southampton have informed aviation security policies and training procedures of soldiers in the USA and UK. The research has applied principles from vision science to the practical field of contemporary security, specifically the screening of airport baggage for weapons and explosives, and the search for Improvised Explosive Devices (IEDs) embedded in the environment in combat theatres such as Afghanistan. Findings have contributed to international airport security and to vital training for troops in combat situations. They have also been widely used to inform the public about the latest advances in security procedures.
Research by Amol Sasane and co-authors is the foundation of an invention patented and used by the aerospace company Boeing to design flight control systems. The invention is a method which aims to optimize aerodynamic performance of aircraft, thereby improving fuel efficiency and flight safety.
Sasane and his co-authors' research is explicitly mentioned as having been used to overcome a problem in flight control — one that arises in newer, more sophisticated aircraft designs — in Patent no. US 8, 185,255 B2, 'Robust control effector allocation'.
Space has been identified as an area of economic growth by the UK Government as a direct result of the 2010 Innovation and Growth Strategy (IGS) for Space. This study has resulted in a transformational change with the formation of the UK Space Agency, significantly increased investment and new opportunities. The Unit contributed critically to the IGS and resulting actions by stressing the underpinning nature of academic space research and providing academic lead on key recommendations of the IGS and its subsequent technology plan. The research has also significantly impacted a number of companies increasing their research and development and economic bases e.g. a Leicester based SME Magna Parva Ltd.
A collaborative research project between the Division of Imaging Sciences and Biomedical Engineering, King's College London (KCL) and Philips Healthcare has devised methods to register (i.e. align or match) pre-operative 3D computed tomography (CT) images to intraoperative 2D X-ray images, resulting in more accurate and robust registration/alignment measures. The measures can be applied directly to images from standard X-ray machines, allowing for rapid translation to guide surgical procedures and radiotherapy. These measures (or close variants) are used routinely in commercial products by Accuray, Philips Healthcare and Cydar Ltd (KCL spinout), benefitting the care of hundreds of patients worldwide, every day.
PolySNAP is an extensive commercial computer program developed at WestCHEM to process and classify large volumes of crystallographic and spectroscopic data. It is a market-leading product sold and supported by Bruker Corporation (a manufacturer of scientific instruments for molecular and materials research selling products world-wide) and is used in laboratories throughout the world supporting business in the pharmaceutical, materials, mining, geology, and polymer science sectors. The PolySNAP software was and continues to be sold in combination with all Bruker x-ray powder diffractometers.
In 1999, Chris Abell (Chemistry), Tom Blundell (Biochemistry), and Harren Jhoti co-founded Astex Technology Ltd. to develop an X-ray structure-guided, `fragment-based' approach to drug discovery. This led to a significant change in how the pharmaceutical industry approached drug discovery. Astex Technology Ltd developed four molecules in-house using this approach, which have in 2013 reached Phase I/II clinical trials for various tumours. Four further molecules have been taken into Phase I through collaborations between Astex and Janssen, Novartis and Astra Zeneca. In 2011 the company was sold to SuperGen, Inc., for $150 million (ca £100 million), creating Astex Pharmaceuticals, Inc., currently with ~120 employees, and a value of >$500 million (> £320 million).