Log in
Workers at the University of Leeds researched, then developed and patented the `hot compaction' process for the manufacture of single polymer composites [1]. In this process highly oriented polymer fibres are heated so that a proportion of the surface of every oriented element melts. Upon cooling, this skin recrystallises to form the matrix of a self-reinforced fibre composite. Important resultant properties include high stiffness and strength, lightweight and outstanding impact strength, leading to a material with crucial commercial advantage. The reach of this impact is demonstrated by commercialisation of the polymer composite over a wide range of applications including anti-ballistic body armour, sports goods (Nike, Bauer), lightweight luggage (Samsonite), audio speakers (Wharfedale) and radar covers for helicopters (Westland). Examples include Samsonite using the material Curv® to manufacture two new high profile product ranges (Cosmolite and Cubelite) and Bauer using it in their elite-level ice hockey skate range (SUPREME and VAPOR).
The development of disentangled, ultrahigh molecular weight polyethylene at Loughborough University since January 2007 has provided an environmental friendly route to the manufacture of high modulus, high tensile strength tapes with applications ranging from body armour to helmets, ropes and cables. Commercialisation is being undertaken by the Japanese company Teijin, in the Netherlands, under the brand name Endumax®. The new business, started in 2011, now employs >80 staff and predicts annual sales of >€15M from 2014 with an increase of ~10% over the first five years. Competitors such as Du Pont (Tensylon®) and DSM (Dyneema BT10®) have also initiated development of products using the new process route.
A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.
Research at the University of Manchester has supported the development of drinks vending systems for Mars Drinks. The research has demonstrated that a detailed understanding of the relationship between the structure and properties of the polymeric components is vital for the design and performance of two drinks vending systems, Flavia (single-portion fresh beverages) and Klix (in-cup beverages). This research has contributed to major improvements in materials selection, quality control, cost reduction and performance. These drinks vending systems were developed originally in the UK in collaboration with the University of Manchester, with Flavia now also manufactured in the USA and marketed worldwide by Mars Drinks with an estimated sales value of > US$400m per annum.
Researchers in QUB developed the first commercial process control system (Rotolog) and simulation software (RotoSim) for the Rotomoulding Plastics Industry. There has also been recent commercialisation of a new energy-saving system, the Rotocooler.
The fundamental understanding of the process that was developed also enabled the moulding of new materials for new application areas, notably motorcycle fuel tanks (now used by BMW, Ducati, Harley Davidson and Honda) and the world's first concept car made from sustainable polymers.
Global economic and environmental impact arises from a significantly more efficient process, better product quality, a greater selection of processable materials and thus increased sales.
The impact presented is the use of research carried out in the School of Chemical Engineering by a range of multinational food industries (inc. Unilever, Cargill, PepsiCo) to engineer a series of fat-reduced foods such as low fat spreads (LFS), dressings, margarine, sauces and mayonnaise. This has allowed them to build up a portfolio of novel low fat products; this portfolio would be much reduced or in some cases non-existent without the research contribution and capability generated by the Birmingham group as stated by Peter Lillford5.1 (former Chief Scientist, Unilever) and John Casey, (Vice President Biological Sciences, Unilever)5.2. These products are a significant and growing market segment e.g. LFS now outsell margarine/butter in a number of countries and are estimated to be worth globally 10 Billion Euros per year between 2008-13. Thus these products are having a significant impact on the industries' profitability. In addition, consumption of low fat foods act to tackle obesity with knock on effects for government (health service, lost GDP etc.) and the community as a whole.
A significant body of research in ultrasonics at the University of Strathclyde led to the formation of Alba Ultrasound Limited in 2000. This successful UK engineering manufacturing company designs and manufactures high quality wideband ultrasonic array transducers for sonar applications to a worldwide client base, delivering benefits ranging from naval and maritime security through to safer ocean environments and informed exploitation of marine resources. Alba Ultrasound's unique array transducers constitute the sensor front-end in many leading sonar systems, and its innovative products are incorporated in a range of sonar devices used by the military and commercial companies. Through application of Strathclyde research, the company has experienced a significant period of growth during 2008-2013, with a three-fold increase in employees and turnover rising from £750k to £3.8M.
Research carried out by Prof. Ton Peijs and colleagues has led to significant breakthroughs in engineering plastics: PURE® and its licensed Tegris® technology, which are lightweight self- reinforced alternatives to traditional polypropylene (PP) composites such as glass-fibre or natural- fibre-reinforced PP. Environmentally friendly and 100% recyclable, these strong and ultra-light self- reinforced plastics have been successfully used across a number of applications, from suitcases and sports gear to protective armour and automotive panels, with impressive results. When used for car, truck and van components, they have been shown to help lower exhaust emission levels and increase fuel economy.
Initial research into polymer nanocomposites and their formation took place at Strathclyde from 2000 - 2010. This was followed by a collaboration with the world's largest manufacturer of composite kitchen sinks, Carron Phoenix Limited, through a 6-year Knowledge Transfer Partnership (KTP) which resulted in a successful new production process of its high-end synthetic granite kitchen sinks. This led to £4 million of capital investment in new production facilities at their Falkirk site, enabling the company to sustain its leading position in the designer kitchen sink market and retain its workforce of over 400 employees in central Scotland, including the 170 workers in the composite sink division in Falkirk. Within the REF period, the research has led to the manufacture and sale of in excess of one million kitchen sinks, generating sales revenue in excess of over £50M and supporting the UK economy.
The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.