Log in
Research undertaken by Professor Frances Ashcroft at the University of Oxford and her collaborators at the University of Exeter has led to several hundred neonatal diabetes (ND) patients worldwide being able to switch from daily insulin injections to oral sulphonylurea tablet therapy since 2008. ND is a rare but potentially devastating monogenic form of diabetes affecting about 1 in 150,000 live births. Sufferers were previously assumed to have type 1 diabetes and thus were treated with insulin injections; sulphonylurea treatment has transformed their quality of life and led to marked health improvements. It has also ameliorated the mental and motor developmental delay that affects about a fifth of ND patients.
The treatment of patients with neonatal diabetes has been transformed by the research of Professors Sian Ellard and Andrew Hattersley at Exeter. Childhood diabetes usually presages a life-long requirement for insulin injections and a reduction in quality of life. This research revealed that ~50% of patients with permanent neonatal diabetes have mutations in a potassium channel regulating insulin secretion. A new diagnostic test was introduced and relevant patients were switched from insulin injections to oral therapy. As a result, patients in 77 countries across 5 continents now benefit from improved care, a better quality of life and reduced healthcare costs.
Metformin is now the most prescribed medication for type 2 diabetes worldwide. Pre - 1990 it received trivial use and was on the verge of withdrawal. Research at Aston (1993 - 1996) generated a new appreciation of its mechanisms of action and therapeutic potential. Aston research was reinforced with a concerted education programme for healthcare professionals, including high-profile reviews and treatment guidelines. We claim impact on health & welfare and health practitioners as Aston research has provided a foundation for improved care of type 2 diabetes patients on a global scale.
Long-standing research led by Prof. O'Rahilly (Department of Clinical Biochemistry) into the genetic and biochemical basis of severe insulin resistance syndromes, has led to improvements in diagnosis and care of patients internationally. These advances have facilitated revision of existing clinical classifications and implementation of novel diagnostic and management algorithms for these conditions. The clinical applicability of this research was recognised in 2011 by the Department of Health-England who have commissioned a national severe insulin resistance service in Cambridge, with support totalling ~£450,000 per annum.
Diabetes research at University of Ulster (Ulster) addresses the unmet need of industry for new and more effective commercially applicable approaches for diabetes therapy. We have generated a new class of innovative peptide therapeutics resulting in a strong portfolio of intellectual property, significant international recognition, financial investment and job creation, with commercialisation through Ulster's technology transfer company, Innovation Ulster (IUL), and the Ulster start-up company, Diabetica Ltd. Our substantial interactions with industry have resulted in the licensing and further development of our international patents on stable incretin peptides for diabetes and, through our discovery of their positive effects on cognition, for treatment of Alzheimer's disease. This work has provided industry with new and commercially viable approaches to significantly improve the lives of people with diabetes and related neurodegenerative disease.