Similar case studies

REF impact found 69 Case Studies

Currently displayed text from case study:

Economic impact through improved product and process development within Carron Phoenix.

Summary of the impact

Initial research into polymer nanocomposites and their formation took place at Strathclyde from 2000 - 2010. This was followed by a collaboration with the world's largest manufacturer of composite kitchen sinks, Carron Phoenix Limited, through a 6-year Knowledge Transfer Partnership (KTP) which resulted in a successful new production process of its high-end synthetic granite kitchen sinks. This led to £4 million of capital investment in new production facilities at their Falkirk site, enabling the company to sustain its leading position in the designer kitchen sink market and retain its workforce of over 400 employees in central Scotland, including the 170 workers in the composite sink division in Falkirk. Within the REF period, the research has led to the manufacture and sale of in excess of one million kitchen sinks, generating sales revenue in excess of over £50M and supporting the UK economy.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Materials Engineering, Resources Engineering and Extractive Metallurgy

QUB plays Pivotal Role in Rotomoulding Global Success Stories

Summary of the impact

Researchers in QUB developed the first commercial process control system (Rotolog) and simulation software (RotoSim) for the Rotomoulding Plastics Industry. There has also been recent commercialisation of a new energy-saving system, the Rotocooler.

The fundamental understanding of the process that was developed also enabled the moulding of new materials for new application areas, notably motorcycle fuel tanks (now used by BMW, Ducati, Harley Davidson and Honda) and the world's first concept car made from sustainable polymers.

Global economic and environmental impact arises from a significantly more efficient process, better product quality, a greater selection of processable materials and thus increased sales.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Chemical Engineering, Materials Engineering

Unprecedentedly high modulus, high tensile strength light weight tapes and films for demanding applications

Summary of the impact

The development of disentangled, ultrahigh molecular weight polyethylene at Loughborough University since January 2007 has provided an environmental friendly route to the manufacture of high modulus, high tensile strength tapes with applications ranging from body armour to helmets, ropes and cables. Commercialisation is being undertaken by the Japanese company Teijin, in the Netherlands, under the brand name Endumax®. The new business, started in 2011, now employs >80 staff and predicts annual sales of >€15M from 2014 with an increase of ~10% over the first five years. Competitors such as Du Pont (Tensylon®) and DSM (Dyneema BT10®) have also initiated development of products using the new process route.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Expertise in die drawing of polymers leads to new materials, new manufacturing processes, new products and a new company

Summary of the impact

Research into die drawing of polymers at Bradford has resulted in a new building material that is stronger and more durable than wood; and new bioresorbable shape-memory polymers for use in medical implants that reduce patient trauma and costs. The wood replacement material is commercialised by the United Forest Products/Dow USA 2010 spin out company Eovations LLC for use in a range of construction applications; the bioresorbable shape-memory polymers have recently been patented (4 patents filed) by Smith & Nephew for use in soft tissue fixations. These impacts form part of a range of exploitations of our oriented polymer technology.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Recycling Mixed Plastics

Summary of the impact

Research at Brunel University demonstrated how the Powder Impression Moulding (PIM) process can be adapted to form a solid-skinned and foamed core polymer lightweight sandwich panel from 100% mixed post-consumer polymers. The research showed that unlike conventional plastic recycling technologies, this process was tolerant to high concentrations of impurities. It was also shown that coarse flakes could be used as feedstock, removing the need to grind the feedstock to a fine powder. This, for the first time, established the PIM process as a recyling method and provides a source of income for industries collecting post-consumer plastics. In 2009, ERT Plc, who own the IP associated with PIM, signed a licence agreement with 2K Manufacturing Ltd to manufacture and sell a range of flat-board products made from 100% mixed post-consumer plastics. These boards are sold as EcoSheets and are 2K Manufacturing's only product. 2K buy post-consumer recycled plastics from recycling firms who run Municipal Recycling Facilities, (MRF), providing them with increased income from waste collected from consumers, and sell EcoSheets to a variety of industries and distributors for applications in construction, agriculture, flood control facilities and military uses. For commercial reasons, exact production and sales figures are not available, but we estimate that at least 1 million boards have been produced and sold since 2009. The impact on the end user is that, although the price of an EcoSheet is comparable to the plywood board it replaces, EcoSheet does not rot, is more workable, and can be recycled several times.

ERT Plc have licensed the technology enhanced by the Brunel research to a number of other businesses.Thus the research at Brunel has assisted the creation of a new industrial sector, and a new product with many advantages, including reduced reliance on virgin polymers and reduced environmental burdens (such as landfill costs), over the product it replaces. This has created economic and environmental benefits at all stages of the consumer plastic cycle, creating new industries and jobs.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

The development of lightweight, high-impact-resistant polymer composites with wide-ranging commercial applicability

Summary of the impact

Workers at the University of Leeds researched, then developed and patented the `hot compaction' process for the manufacture of single polymer composites [1]. In this process highly oriented polymer fibres are heated so that a proportion of the surface of every oriented element melts. Upon cooling, this skin recrystallises to form the matrix of a self-reinforced fibre composite. Important resultant properties include high stiffness and strength, lightweight and outstanding impact strength, leading to a material with crucial commercial advantage. The reach of this impact is demonstrated by commercialisation of the polymer composite over a wide range of applications including anti-ballistic body armour, sports goods (Nike, Bauer), lightweight luggage (Samsonite), audio speakers (Wharfedale) and radar covers for helicopters (Westland). Examples include Samsonite using the material Curv® to manufacture two new high profile product ranges (Cosmolite and Cubelite) and Bauer using it in their elite-level ice hockey skate range (SUPREME and VAPOR).

Submitting Institution

University of Leeds

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Multi-million pound sales and efficiency gains through formulation development and process optimisation

Summary of the impact

Significant economic impact was achieved as a result of research into polymer nanocomposites and their formation, conducted at WestCHEM from 2000 to 2010. Collaboration over the six-year period 2004-2010 with Carron Phoenix Ltd, the world's largest manufacturer of composite `granite' kitchen sinks, led to nanocomposite technology being incorporated into over one million sinks, generating income for the company in excess of £50M from 2007 to the present day. Considerable production efficiency gains saved in excess of £1M annually through the reduction in manufacturing time, the reduction of raw materials wastage, and the reduction in landfill costs (and commensurate environmental benefit) for failed and out-of-spec products. In addition, a £4M capital investment by the company at the Falkirk plant was secured, enabling the company to sustain its leading position in the designer kitchen sink market. With the site consequently designated as the parent company's competency centre for composite sink technology, employment for 170 workers was secured.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering, Mechanical Engineering

Fabrication of 3D electro-optic circuits by printing (FAB-3D)

Summary of the impact

Prof Silver's research on the development of the technology to fabricate 3D electro-optic circuits via ink-jet and screen printing has provided a more sustainable solution to conventional back-lit posters (energy saving up to 75%) and printed displays. Due to the flexibility of the components (they can be printed in any shape or design) and low maintenance (battery operational), the technology has been commercially exploited by several industrial collaborators. Johnson Matthey have used Brunel research to gain knowledge of the market and supply chain, to sell silver and palladium nano-particles for ink-jet printing and to inform the investment of around £2M on R&D in this area. Intrinsiq Materials Ltd successfully marketed copper-based inks for ink-jet printing of ACEL displays, allowing the company to employ 22 additional staff. In addition, they have secured $4M of venture capital investment to develop the technology. Printed Electronics Ltd have secured £8.6M of investment to develop a high-volume supply chain for printed electronics, and have employed an additional 9 staff within the company. As a result of working with Brunel, Keeling and Walker have begun to sell ink that contains antimony-doped tin oxide nano-powders.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Polymers for Drinks Vending Applications

Summary of the impact

Research at the University of Manchester has supported the development of drinks vending systems for Mars Drinks. The research has demonstrated that a detailed understanding of the relationship between the structure and properties of the polymeric components is vital for the design and performance of two drinks vending systems, Flavia (single-portion fresh beverages) and Klix (in-cup beverages). This research has contributed to major improvements in materials selection, quality control, cost reduction and performance. These drinks vending systems were developed originally in the UK in collaboration with the University of Manchester, with Flavia now also manufactured in the USA and marketed worldwide by Mars Drinks with an estimated sales value of > US$400m per annum.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Industrial take-up of advanced manufacturing process for nanomaterials

Summary of the impact

Research at Kingston University into the use of flame spray pyrolysis (FSP) to manufacture metal oxide nanoparticles has resulted in the creation of an industrial FSP nanoparticle production line. This achieves production rates an order of magnitude higher than was previously achievable, while allowing particle size to be controlled at the same scale as existing small FSP processes.

TECNAN, a Spanish SME, established in 2007, that manufactures and sells nanomaterials on the international market, has used this production line to produce a range of nanoparticles for commercial customers, for use in a wide range of applications. As well as allowing a broad product range to be offered, the production line also achieves a cost reduction of over 30% compared to previous manufacturing methods.

Submitting Institution

Kingston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies