Log in
Thin-film optical filter research at the University of Reading is a unique and enabling technology that permits astronomers and meteorologists to gather data leading to increased understanding of atmospheric and astrophysical phenomena. Infrared filters are the key optical components in many satellite telescopes for Earth observation, planetary research probes and infrared astronomy. They form the eyes of the instrument to separate light into wavebands in order to measure temperature, gas composition, water vapour, dust clouds and aerosols. This data is used to generate accurate atmospheric and environmental circulation models for global climate studies, and measure properties of the universe for stellar and planetary formation theories.
Research undertaken by the University of Sheffield between 1999 and 2012 in functional oxide thin films was commercialised through knowledge transfer partnerships (KTP) with Ilika Technology. This directly led to over £1M in contracts and subsequent improvements in the commercial viability of the product base of blue-chip companies such as Toshiba, Toyota and Ceramtec and contributed to the increase in Ilika's turnover to ~£2M per annum and a growth in staff from 5 to 35 in 2012. In 2011, Ilika floated on the stock exchange with a valuation of ~£20M. The CEO has personally recognised the role Sheffield has played in establishing Ilika Technology as a limited company and in growing company revenue through contracts with leading multinationals.
Research in the Mechanical Engineering Department has led to a series of experimental techniques for measuring the fundamental properties of lubricants in a scientific manner. These include measurement of the thickness, structure and properties of fluid and solid lubricating films, as well as the friction, fatigue and wear behaviour of lubricated surfaces.
Measuring instruments based upon these techniques have been commercialised by a spin-out company, PCS Instruments, which has now become the largest supplier of Tribology test equipment in the world. Over the period 2008-13 it had a turnover of £39.8M (£7.63M in 2012-13). The research has changed the way in which lubricants and lubricant additives are developed, with PCS test rigs in use in all the major lubricant and additive companies, as well as many University tribology research and National Standards laboratories. The techniques have enabled the development by industry of a new generation of high-efficiency lubricants for automotive applications.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
Research in atmospheric pressure (thermal) chemical vapour deposition (APCVD) at the University of Salford demonstrates the following impact:
The Thin Film Centre (TFC) group at UWS pioneered thin film materials and processes for plastic electronics with Dupont Teijin Films (DTF) Ltd and Plastic Logic (PL) Ltd over a period of nine years. This work was pivotal to the growth of PL from a start-up position resulting in the first all-polymer e-book reader and was the basis of a world leading position in the supply of specialised substrates for DTF Ltd.
The provision of professional analysis and advice has created an economic impact of $0.6M with AVX Ltd, a leading supplier of electronic components within the Kyocera Group. This information was pivotal to AVX Ltd retaining a major contract, for multi-layer ceramic capacitor (MLCC's) supply through to the automotive manufacturer Volkswagen Group. Our intervention addressed a reliability issue in the MLCCs and allowed them to improve processes and revise manufacture protocols. The impact drew on previous collaborative research with AVX Ltd and innovative methodologies for preparation of micro and nanoscale samples of materials in capacitors in academic research.
This research within the Unit was in collaboration with TT Electronics plc. to develop a novel low-ohmic thin film resistor for precision current measurement in power management applications. TT Electronics plc. is an international company with 6,000 employees worldwide and annual sales of over £500 million to multinational clients such as BMW, Daimler and BAE Systems. Since 2008 the benefits of this research to TT Electronics plc. include:
The Surrey Ion Beam Centre (based at the University of Surrey) pioneered the field of ion beam applications and is regarded as world leading, having initiated a significant number of high profile research activities for which it received recognition through the Queen's Anniversary prize in 2002. It works actively with industry, developing bespoke processes and services, particularly for the photonics industry, ultimately generating millions of pounds for the UK economy. It also serves as a European Centre for doctoral training.
Since the 1950s, when they were first developed, scanning electron microscopes (SEMs) have revolutionised science. However, the large physical size of these machines and their aggressive treatment of samples has limited their use. Now research carried out by Professor Mohamed El-Gomati has led to the development of products for global companies including Agilent, Carl Zeiss and Shimadzu. These products include the world's first low-voltage desktop SEM, capable of resolving features smaller than 5 nanometres, and handling radiation sensitive samples such as biological and medical materials, novel photoresists, nanotubes and nanorods. The smaller size has also improved accessibility of such instruments leading to significant efficiency gains for companies and academia worldwide.