Log in
Research on clinically important red blood cell membrane proteins has helped avoid unnecessary treatment of Rhesus negative pregnant women and enabled the early diagnosis of a rare kidney disease. During the late 1990s, researchers at the University of Bristol, in collaboration with the Blood Service in Bristol, cloned, sequenced and characterised many red blood cell membrane proteins important for transfusion, including the Rhesus proteins and Band 3/AE1 (SLC4AE1 gene). The work on Rhesus proteins facilitated the use of less invasive genetic screening methods to ascertain whether treatment was required to avoid Haemolytic Disease of the Foetus or Newborn (HDFN). In the UK, 5,000 women have been screened since 2001. Within the first six months of implementation of a Danish national screening program in January 2010, 862 women avoided unnecessary treatment. Reducing unnecessary treatment of mothers has saved resources and avoided unnecessary exposure to human derived blood products. In addition, research that has identified specific SLC4AE1 gene mutations that cause the rare kidney disease called distal renal tubular acidosis has enabled the early diagnosis and treatment of the disease, resulting in improved outcomes for patients.
This case study outlines the impact of novel omega-3 fatty acid therapy for sickle cell disease on health and policy. 128 patients on the treatment since 2010, and another 300 who started to receive it in June 2012 have seen remarkable improvements in health and quality of life as assessed by reductions in hospital admission and absence from work/school due to the disease. A panel of experts set up by the Ministry of Health of Sudan to evaluate the evidence recommended the integration of the therapy in the management of the disease in a policy report dated December 20, 2012. The Ministry has accepted the recommendation.
Diagnostic tests have been successfully developed for identification of the cause of erythrocytosis, particularly in patients with unexplained forms of this rare disease. A diagnostic service with worldwide reach was developed for the genetic characterisation of patients that carry mutations identified by the Queens's group. It deals with approximately 100 samples per year referred for investigation for this rare disease from the UK, Europe and further afield. Proper diagnosis helps in management of patients with erythrocytosis where the problem is not mutation in one of the familiar causative genes. A pan-European web-based database has been established to collect information on long-term outcomes to inform patient management.
Impact: Health and wellbeing; translation of a clear evidence base for reducing red blood cell use in intensive care and surgery into guidelines and changed clinical practice.
Significance: A 20% reduction in overall UK red blood cell usage between 2002-2012, saving the NHS approximately £100M annually; 7000 fewer patients are exposed to red cell transfusion annually, saving 500 lives.
Beneficiaries: Patients in intensive care units; the NHS and healthcare delivery agencies.
Attribution: Studies were led by Walsh at UoE with NHS and Canadian collaborators.
Reach: 7000 patients per year, UK-wide; incorporation into international guidelines.
Malaria is endemic in more than 100 countries but its rapid and accurate diagnosis in locations remote from clinical laboratory facilities remains challenging yet desperately needed. This case study describes how scientific discoveries made in the field of digital data storage have been developed and applied to deliver a rapid, reliable and low cost malaria diagnosis sensor suitable for field application. Diagnostic devices have been both laboratory-tested and clinically trialled on over 900 patients under adverse field conditions in malaria endemic countries with very promising results. The health impact includes not only significantly reducing unnecessary treatments but potentially saving millions of lives.
Research conducted by Professor Tim Goodship and co-workers at Newcastle has had a profound effect on the prognosis for patients with atypical haemolytic uraemic syndrome (aHUS). By engaging in research on the genetic factors underlying the disease they developed an understanding of the molecular mechanisms responsible. Identifying that the majority of patients with aHUS have either acquired or inherited abnormalities of the regulation of complement (part of the immune system) led to the establishment of a UK national service for genetic screening and treatment with the complement inhibitor eculizumab. As eculizumab is now available to patients in England, the progression to end-stage renal failure can be prevented and patients already on dialysis will soon be successfully transplanted.
Meningococcal meningitis is a life-threatening acute disease affecting 1.2 million people every year. Accurate and rapid diagnosis is essential for optimal patient response; however, bacterial culture tests are slow and undermined by the immediate administration of antibiotics, resulting in sterile cultures.
The Surrey team developed a rapid, non-culture-based diagnostic test for meningitis and septicaemia: this test is now routinely used for diagnosis of meningococcal disease worldwide, and was also instrumental in the implementation and monitoring of control measures for the disease, such as life-saving vaccination campaigns. Together these have contributed to the halving of adult mortality rates from meningitis worldwide.
King's College London (KCL) research has made a major contribution to improving the quality of life for patients who have anaemia linked with chronic kidney disease. Studies undertaken by KCL researchers established that intravenous iron supplementation was required in anaemic patients with advanced kidney disease, in whom oral iron therapy was ineffective, and defined the best regimes for administration of intravenous iron. Subsequent KCL work on drugs that stimulate production of red blood cells (erythropoiesis) defined the target levels of haemoglobin to aim for in chronic kidney disease patients. Most recently, KCL researchers made the key discovery that the novel drug peginesatide for the first time enables the rescue of patients who develop a rare and potentially fatal reaction against erythropoietin (which is the commonest treatment for anaemia in chronic kidney disease). These KCL research studies have had a significant impact by making a major contribution to national and international clinical guidelines, including UK NICE guidelines and the 2012 National Kidney Foundation KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease.
A low-cost, efficient, blood cell salvage technology (HemoSep) has resulted from research carried out at Strathclyde between 2008 and 2013. The novel technology has been patented and licensed to Brightwake Ltd., who manufacture the device in the UK and market it through a global distribution network. HemoSep has now been used in clinical centres across Europe, North America, and South Africa since its commercial launch in late 2012. The use of the device has been shown to reduce the need for donor blood transfusions in open-heart surgical patients by at least 1 unit (450 ml) with an associated reduction in transfusion related complications such as heightened inflammatory response and bleeding. The reduction in blood transfusions associated with the use of HemoSep has a considerable cost benefit to healthcare providers (in North America blood costs up to $1600 per unit). In addition, commercialisation of HemoSep has led to the creation of new manufacturing, marketing and sales jobs in the UK and overseas.
Research by the University of Southampton has helped transform the understanding and treatment of chronic lymphocytic leukaemia (CLL), the most common leukaemia, affecting around 2,400 patients each year in the UK and 17,000 in the USA. Southampton's widely cited studies revealing the existence of two subsets of CLL have been crucial in giving clinicians and patients in the UK and overseas a much clearer indication of the likely disease course. The predictive information is now included in all clinical trials and in international guidelines, delivering greatly improved care. The research has also inspired the development of a new drug given "breakthrough" status by the Food and Drug Administration in the United States.