Similar case studies

REF impact found 35 Case Studies

Currently displayed text from case study:

Combinatorial protein domain hunting to facilitate drug discovery

Summary of the impact

Combinatorial Domain Hunting (CDH) technology is a technique for producing fragments of proteins that are soluble and tractable for biophysical analysis. It was developed between 1999 and 2008 at Birkbeck College, in the laboratory of Dr Renos Savva. This technology was patented in 2001 and the biotech company Domainex Ltd was then formed to commercialise it. In 2007, Domainex merged with a UCL spinout company, NCE Discovery Ltd. The company has attracted over £3m in investment and employs about 31 people. In addition to its contract research programme, it has developed an in-house drug discovery programme utilising CDH. Early in 2012 a patent was filed on a series of inhibitors of the protein kinases IKK03b5 and TBK1, which are validated drug targets for cancer and inflammation, and the first of these are expected to begin clinical trials in 2014.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

New techniques in protein analysis speed up biopharmaceutical R&D

Summary of the impact

Research in protein folding and technological development at the University of Leeds led to the creation of Optim1000, a high throughput microlitre protein stability analyser, through Leeds spin-off company Avacta. Used in the early stages of R&D in the biopharma industry, Optim1000 evaluates the stability and homogeneity of complex biological drugs, using just micrograms of protein sample. This screening reduces the costly development and late-stage failure of unsuitable candidate therapeutics. The platform has been sold to a wide range of global biopharma companies; it is reported to reduce drug stability screening by months. This provides economic impact through saving the industry millions of dollars in R&D costs, along with health impact by speeding up the emergence of new products. Avacta reported revenue of over £3 million in 2012 and employs 70 staff.

Submitting Institution

University of Leeds

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Biological Sciences: Biochemistry and Cell Biology

Development of the spin-out company PolyTherics, a major provider of conjugate therapy and protein modification technology to the pharmaceutical and biotechnology industries

Summary of the impact

Protein modification represents a highly significant and growing source of new products for the biopharmaceuticals market. This case study outlines the development of PolyTherics, a highly successful spin-out company from the UCL School of Pharmacy, and the impact that their enabling technology has had on the pharmaceutical and biotechnology industries. The company was developed as a direct result of new conjugate technology developed by Professor Steve Brocchini and coworkers at the School. The company moved to independent premises in 2006 and now manages a portfolio of over 100 granted and pending patents. Several licensing agreements are in place, including with Celtic Pharma Holdings for haemophilia treatments and Nuron for a multiple sclerosis treatment based on PEGylation conjugation technology. Revenue is expected to be £8m in 2013. The impact of Polytherics is therefore as a significant and effective technology provider to the pharmaceutical and biotechnology industries.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Medical Biochemistry and Metabolomics, Pharmacology and Pharmaceutical Sciences

Commercial health food for sustained appetite control

Summary of the impact

The Fuller Longer (FL) food range was developed by Marks & Spencer (M&S) with expertise from the University of Aberdeen Rowett Institute of Nutrition and Health. Product development was based on Rowett research into the efficacy of high protein and mixed carbohydrate diets for sustained appetite control and weight loss. Obesity is a major public health challenge; therefore it is not surprising that FL has become an established brand for M&S's 20 million customers. This industry-academia partnership to develop a food range based on scientific input, was a first for M&S, and has led to one of the UK's most popular retail healthy-eating food ranges.

Therefore the claimed impact here includes benefits to health and welfare, on commerce, business performance and the economy.

Submitting Institution

University of Aberdeen

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Nutrition and Dietetics

Micro-porous polyethylene: A novel affinity chromatography matrix for the bio-processing industry

Summary of the impact

Essex research identified a novel bioprocessing matrix which has since been developed into commercial products and recently launched into external markets by Porvair Filtration Group Ltd. The discovery involved the chemical modification of sintered thermoplastic materials in order to attach biological molecules, so conferring highly specific functionalised properties to an otherwise inert base material. This enabled a new approach for protein immobilisation, having technical and practical advantages over existing processes. As a direct result, Porvair has adopted a new technology and invested £900k in R&D over eight years. Essex research has supported a change in business strategy, enabling entry into new markets, which has in turn both safeguarded and created jobs at Porvair.

Submitting Institution

University of Essex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Biological Sciences: Biochemistry and Cell Biology

Establishing the spin out company Domainex to exploit novel protein expression technology

Summary of the impact

The Institute of Cancer Research (ICR) founded the spin out company Domainex in 2002 in collaboration with UCL and Birkbeck. The company was set up on the basis of novel research into the expression of soluble protein domains to provide services to a range of bioscience-based companies. Within the period 2008-2013, Domainex has established profitability and positioned itself as a successful company employing over 30 scientists at its laboratories in Cambridge. It has established programmes and contracts with over 20 international clients in medicinal chemistry, drug discovery, monoclonal antibody development and agrochemical science, making a major commercial impact in all these fields.

Submitting Institution

Institute of Cancer Research

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology
Agricultural and Veterinary Sciences: Fisheries Sciences

The impact of protein phosphorylation and kinase profiling research at the University of Dundee on identifying drug targets and accelerating product development in the pharmaceutical industry.

Summary of the impact

Kinases, the enzymes that catalyse phosphorylation events, have been implicated in hundreds of different diseases, and hold rich promise for drug development. In 1998, The University of Dundee developed the first systematic assay to analyse the selectivity of protein kinase inhibitors, termed `kinase profiling'. This technology has been crucial for the development of new therapeutic drugs targeting protein kinases. In order to promote drug discovery in the area of kinases, the Division of Signal Transduction Therapy (DSTT) was formed and provides a unique collaboration between the University and six of the world's leading pharmaceutical companies.

Submitting Institution

University of Dundee

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

11 - Ionscope and development of novel scanning Ion Conductance Microscopes

Summary of the impact

Research carried out within Imperial's Life Sciences department led to a collection of new kit solutions to screen the crystallisation conditions of various membrane proteins. These screens were exclusively commercialized by Molecular Dimensions, a UK company, in 2002, 2003 and 2008 under license from Imperial College London. They are the primary screening kit in membrane protein crystallization that is commercially available. These screens have helped to screen the crystallization conditions of a wide range of membrane proteins, leading to many new structures. Molecular Dimensions has sold [text removed for publication] screens, worth more than [text removed for publication], to both academia and industry all over the world.

Submitting Institution

Imperial College London

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Biological Sciences: Biochemistry and Cell Biology

Commercialisation of a platform technology for production of diagnostic and theraputic reagents

Summary of the impact

Protein reagent production techniques developed at QUB, were transferred to UK-based biotechnology company, Fusion Antibodies Ltd, to increase their competitiveness in the production of diagnostic and therapeutic reagents. These techniques were commercialised by the company as the Fusion Expression TechnologyTM (FET) platform technology, to deliver contract research orders. The transfer of this technology allowed Fusion to accelerate its completion of orders and secure higher value projects. This increased competitiveness led to the tripling its technical workforce (at graduate and doctoral levels), securing new orders from over 15 countries and producing on average £300K per annum (from 2008 onwards) in revenue.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Use of the structure of serum amyloid P, a modulator of amyloid formation, for drug discovery and development

Summary of the impact

Serum amyloid P, or pentraxin-2, is a pentameric calcium-binding protein that binds to amyloid fibrils. It has been implicated in the protection of those fibrils from proteolytic digestion and in the immune response to tissue damage. The structure of pentraxin-2 was first solved by Steve Wood and his co-workers in Tom Blundell's lab at Birkbeck in the 1990s. Wood has continued his work on the pentraxins at UCL, and the company Pentraxin Therapeutics Ltd was spun out of UCL to design and develop pentraxin-binding ligands (based on its structure) as potential treatments for Alzheimer's disease and amyloidosis. Promedior Inc. in the US is developing recombinant forms of pentraxin to control fibrosis. Several of these molecules are now in clinical trials.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Filter Impact Case Studies

Download Impact Case Studies