Log in
Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.
Research performed at the University of Leeds allows the petroleum industry to reduce radically the amount of time that taken to estimate the key properties of tight sandstones containing natural gas. These properties largely determine whether gas fields are economically viable. Tests used in the past have taken between six months and two years to complete; with the Leeds research, results can now be obtained in less than one day — a radical improvement. Industry has used the results to justify drilling new prospects and to improve understanding of the controls on gas and water production in existing fields, which has shaped appraisal and production strategies.
University of Leeds Research has been used by its specialist Turbidites Research Group (TRG) to underpin consultancy work for oil companies that has, in turn, steered them to make high-value decisions. Examples include an oil well placement, the development of an oil field, and a decision to only partially develop another. The TRG has been funded by 14 oil companies since 1992, and its annual income has risen from £125k/yr prior to 2008 to £380k/yr during the REF period. It is estimated that the cumulative value of oil company decisions based on TRG research exceeds several hundred million dollars. Following the impact, Leeds have replicated the TRG business model to form new specialist industrial research groups that have each generated further impact.
Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.
Pre-drill prediction of pore pressure and top seal integrity are fundamental aspects of petroleum exploration; incorrect predictions can result in operational difficulties, dry holes and even blow-outs which can cost the industry billions of pounds. The physical and fluid-flow properties of mud-rich sediments exert a fundamental influence on both pore pressure and top seal integrity. Research in Newcastle has quantified the geological controls on these properties and has resulted in data, practical knowledge, algorithms and software which are now used routinely by major companies (e.g. Anadarko, BG, BHPBilliton, BP, ConocoPhillips, Maersk) as part of their global drilling and prospect risking strategies.
Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.
Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.
Research carried out in the School of Mathematics at the University of Bristol between 1998 and 2005 has been instrumental in the development of structures that arrest or deflect the rapid flow of snow that characterises avalanches in mountainous regions of the world. The research has been embodied in a series of guidance documents for engineers on the design of such structures and many defence dams and barriers have been built across Europe since 2008. The guidance is now adopted as standard practice in many of the countries that experience avalanches. Investment in avalanche defence projects based on the design principles set out in the guidance runs into tens of millions of pounds. The Bristol research is also used internationally in the training of engineers who specialise in avalanche protection schemes. Given the scale of the threat to life and property from these potent natural hazards, the impact of the research is considerable in terms of the societal and economic benefits derived from the reduction of the risk posed by snow avalanches.
Commercialisation: Through government grants, institutional and private investors, a medical devices company (Vascular Flow Technologies) was founded.
Products: Spiral Laminar Flow™ Vascular Grafts for use in bypass for peripheral arterial disease and vascular access for haemodialysis.
Market / Sales: Spiral Laminar Flow™ Grafts are sold in 18 countries, with over 3000 grafts implanted (<1% estimated market size) and sales in excess of £1million.
Patient Outcomes: Published and presented clinical series show the grafts have increased survival rates leading to reduced re-interventions and reduced amputations.
Economic gains by oil and gas companies, improvements in professional practice in hydrocarbon exploration, and environmental benefits from identifying CO2 disposal sites have been achieved through a Cardiff-led consortium with industry. Building on research carried out since 2004, ten of the largest oil companies in the World have contributed to and benefited from understanding how faulted caprocks behave under specific geological conditions. Research at Cardiff has shown which families of faults and fractures make caprocks highly permeable, thus improving Industry's ability to predict if caprocks are able to prevent oil and gas reaching the surface.