Log in
Many operations in daily life, from manufacturing to running a hospital, need to optimise the return on use of resources where volume and value are conditions. Scheduling theory tackles some of the hardest practical optimisation problems, not known to be solvable in reasonable computation time. Strusevich and Kellerer have been able to reformulate practical scheduling challenges as `knapsack problems' - dealing with volume and value constraints - and then design approximation algorithms which can be applied back to the original challenge. The work has attracted EPSRC funding, stimulated a new field of research which is developing fast, been widely published, led to presentations at international conferences including the 2009 Computers and Industrial Engineering conference attended by industry practitioners and is impacting on Combinatorial Optimisation research.
Research on designing mathematical methods for optimisation carried out at the University of Southampton has been fundamental to the development of software solutions for transportation problems and has directly led to the growth and commercial success of the niche software company, Logical Transport. Additional beneficiaries are local councils — who have obtained school bus schedules that typically reduced the number of required vehicles by 10-20% and miles driven by 12-15% and have an information management tool for better decision making — and passengers who have experienced improved service quality.
Professor Wright has developed practical scheduling implementations for sports fixtures and officials, with regular clients at both professional and amateur level in the UK and abroad, including the England and Wales Cricket Board and the New Zealand Rugby Union. His expertise also supports `what if' exercises, enabling clients to experiment with new ideas and announce changes with confidence that they will work in practice. His work has resulted in financial gains, substantial savings in skilled administrative time and high satisfaction for stakeholders. His research has potential reach across numerous sports, at all levels across the world.
Poor staff rosters are at the heart of socially-unacceptable working patterns, inadequate rest times and increased levels of stress. They lead to poor productivity, low levels of engagement and additional costs associated with high levels of staff turnover and absenteeism. Research undertaken at City University London has harnessed the power of `Optimisation' techniques to assist managers to draw up good quality staff rosters in hospitals, call centres and other large workforce organisations. The state-of-the-art electronic rostering programme improves use of resources, reduces reliance on costly agency staff, reduces the risk of fines for breaching legal requirements such as the European Working Time Directive and leads to significant savings in the health and social care sectors.
Through close collaboration with scientists at the European Space Agency (ESA), research at the University of Southampton has developed new algorithms and an associated software tool that have contributed to more efficient spacecraft design. Now a standard component of the ESA's design technology, the tools have doubled the speed in which crucial design processes can be completed, resulting in increased efficiency over the REF period of 20 person-years — equivalent to €1 million in monetary terms — and maintaining the ESA's manufacturing competitiveness. The success of this work led to a €480,000 EU grant to adapt the tools for the avionics industry as part of efforts to meet ambitious environmental targets under the EU Clean Sky Initiative.
The Leeds unit's MoD-funded research programme in hypervelocity impact dynamics has: saved the MoD two years in ballistic development and £1.5m-£2m in costs; guaranteed robustness and reliability of MoD computations; enabled the MoD to deliver advanced research output cost- effectively under severe budgetary pressures; continued to underpin a £4m annual income for the MoD's War Technology consultants QinetiQ; provided the MoD with a world-leading explosion- simulation capability. MoD codes underpinned by the Leeds research have, during the REF period, led to a reduction in front-line casualties of British Forces in Afghanistan and Iraq, and enabled government agencies to make quantifiable assessments of threats to transport and public-building infrastructure, e.g. in the planning of the 2012 Olympic Games. QinetiQ have used the codes with industry to develop a new explosive perforator for oil extraction that has: "halved the R&D process, time-to-market and cost of oil-well exploitation"; improved oil flows by 30-40% in tests undertaken by oil companies, and; yielded substantial (but confidential, see §4e) recurrent licensing royalties.
Optimisation tools developed in the UoA have significantly advanced the ability to find the best designs for complex systems in cases where these were previously unobtainable. These optimisation tools have been implemented in several companies to shorten design times, reduce costs and reduce CO2 emissions. This has brought about new multi-million pound revenues, long-term contracts, increased employment and contribution to sustainability targets.
Pioneering research into Inductive Logic Programming in the UOA led to the creation of Secerno Ltd. From 2008 Secerno attracted investment of approximately $20m and successfully released several updated versions of its product DataWall, based on this Oxford research. In May 2010 Oracle Corporation bought Secerno specifically to gain access to this technology, which now forms a core part of Oracle's database protection and compliance products. Oracle continues to develop the software, which is used across the globe by public entities and private companies to protect databases from internal and external attack and to ensure that they comply with relevant legislation. Customers include major businesses such as T-Mobile, which uses Database Firewall to protect 35 million users.
Soft Systems Methodology (SSM), developed by Peter Checkland and colleagues at Lancaster University, has been adopted worldwide for tackling complex problems in both private and public sectors. It is used widely in consulting practice, leading to major business and economic impacts. In examples 1 and 2 we report major impacts, including a reshaped multi-national business and extra profits of RMB 50M in a Chinese company. In addition, SSM has helped effect major cultural change within multinational business as described in example 3 and has been adopted as part of mainstream business analysis (examples 4, 5 and 6). This has been achieved through a deliberate policy of action research and post-experience education, supported by academic and practitioner-oriented books.
Water distribution systems (WDS) are highly complex, spatially distributed networks comprising thousands of different components which deliver drinking water to customers. The impact described here has been achieved in areas of energy management, pressure control and burst detection in WDS. Some developed solutions, such as the model reduction method, model of pump stations and pressure control algorithms, have been widely accepted by the water research community and then filter down to industrial applications or implemented in a widely available shareware. Direct economical and environmental impacts have been achieved by projects for the UK companies with measurable benefits in pounds through reducing water losses and energy consumption as described in Section 4. These include South Staffordshire Water, Aquavent and Scottish Water in the pressure control area and Affinity Water (former Veolia) in the energy management and burst detection areas.