Similar case studies

REF impact found 14 Case Studies

Currently displayed text from case study:

Global sales of tomographic instruments benefiting process industries

Summary of the impact

Research into industrial process tomography has been performed at the University of Leeds from 1999 to the present day with much of this being in collaboration with Industrial Tomography Systems plc (ITS). This research, together with the associated intellectual property, has provided the foundation of 5 innovative new products developed and produced by ITS during the eligible period. These new products have generated sales of £5m and are in large part responsible for increases in turnover and employment of approximately 60%, and exports of 67% since 2008. These instruments are used in a significant number of new applications and are generating major benefits to end users in the oil and gas, pharmaceuticals, chemicals, consumer products, minerals and food sectors.

Submitting Institution

University of Leeds

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

Reductions in emissions and improvements in boiler efficiency at power stations burning coal and biomass

Summary of the impact

Two related research activities 1) on low NOx burners and 2) on co-firing of biomass have led to combined economic savings estimated to be in the region £40M-£70Mpa.

The fitting of low NOx burners to power station boilers reduced the NOx emissions but resulted in a reduced amount of saleable bottom slag and a finer pulverised fuel ash (pfa), which placed an increased load on the electrostatic precipitators. Additions of pfa to the power station coals were found to increase the overall combustion efficiency, while at the same time providing an increased amount of a saleable boiler slag and a pfa that could be used as a cement replacement material.

Despite the very different nature of the ashes produced from the combustion of biomass and coals, a detailed characterisation of the residues demonstrated that, with an appropriate choice of both biomass type and coal, a successful co-firing at up to 50% of coal replacement with biomass was possible. Co-combustion with increased levels of coal replacement has produced significant reductions in power station emissions, resulting in both environmental and economic benefits.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Interdisciplinary Engineering

UltraCane and UltraBike: ultrasonic aids for visually-impaired people (Impact Case Study 3)

Summary of the impact

Research at the University of Leeds led to the development of UltraCane — an ultrasonic cane for people who are visually-impaired that gives tactile feedback to the user's hand with progressive non-contact warning of obstacles (ground-to-head) up to 4 m. [text removed for publication]. Testimonials from users describe its transformative nature on their quality of life, giving `a true feeling of independence', whilst healthcare professionals commend `the simplicity of operation and ease of use'. Furthermore, with a technology mimicking bat echolocation, the UltraCane has informed and engaged the wider public in science and engineering through, for example, the BBC `Miracles of Nature' series. The technology has also been developed to allow people who are visually-impaired to cycle independently and safely around a cycle track — the `UltraBike'.

Submitting Institution

University of Leeds

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

The design of radio frequency (RF) components for cellular mobile communications (Impact Case Study 1)

Summary of the impact

Research at the University of Leeds underpinned the development and manufacture of RF filter technology by Radio Design Ltd, including the 3G `Universal RF Combiner Unit' with sales of >£18M (40,000 units) since 2008, which led to the company's Queen's Award for Enterprise (Innovation) in 2011. This technology was subsequently improved specifically for the 2012 London Olympics for shared use by all five cellular operators, and has now been further developed, again using Leeds research, for 4G systems (with >£4.2M sales in 2013). Leeds research has contributed directly to ~75% of Radio Design's products, and its expansion from 11 employees in 2008 to 150 employees today. Leeds-designed RF filters have also been widely utilized by other manufacturers, with estimated annual international sales of tens of millions of pounds since 2008.

In parallel, Leeds research on the physical modelling and design of pHEMT switches has been used since 2008 by RFMD (UK) Ltd (previously Filtronic Compound Semiconductors), who supply all major mobile phone manufacturers — over 2 billion pHEMT switches are used worldwide, with RFMD's estimated sales exceeding £250M since 2008.

Submitting Institution

University of Leeds

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Changing Early Childhood Education: Policy, Practice and Perceptions

Summary of the impact

This case study describes the impact of a sustained programme of research conducted over more than 10 years, which has changed conceptualisations of young children's abilities and needs, and shaped national and local provision from birth to five. The research has influenced early years policy, secondary legislation, professional standards and training, curriculum, and the daily experiences of babies, children and practitioners in every childcare setting in England. It has produced innovative resources to enhance multi-professional practice, and significantly contributed to the deployment of high-quality, interdisciplinary research findings to improve provision, stimulate debate and challenge conventional wisdom about children and childhood.

Submitting Institution

Manchester Metropolitan University

Unit of Assessment

Education

Summary Impact Type

Societal

Research Subject Area(s)

Education: Curriculum and Pedagogy, Specialist Studies In Education

The Robot Scientist

Summary of the impact

This impact case concerns the stimulation of public discourse, informing the awareness, attitudes and understanding of the public as to the potential for automating science, and the consequences that then arise regarding ethics, rights and the acquisition of knowledge. It also concerns debate among legal practitioners.

The Robot Scientist was the first system to fully automate the process of scientific investigation. This work showed that it was possible. The idea was immediately picked up by the popular press and covered worldwide (the fourth most significant discovery in 2009 according to TIME magazine, reported by TV, radio, national newspapers and magazines, and bloggers). It engaged the public in debate about AI, robotics, lab automation, and science.

Submitting Institution

Aberystwyth University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Societal

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Power and fuel from renewable sources, waste and residues

Summary of the impact

The impacts from over 20 years bioenergy research at Aston University, have been through influence and support for businesses to generate and use environmentally advantageous sources of power, fuels and chemicals. Pilot scale systems that exploit pyrolysis and gasification of biomass residues and renewable feed-stocks are operational. The EU, UK and local governments have developed policies with the Unit's advice on the potential of bioenergy for power generation and waste reduction. Technical and business advice have been provided, a new company formed, investments made in new business directions by SMEs and large multinational companies. This has generated new employment opportunities in consultancy, design and manufacture of systems, social and environmental benefits, along with greater public awareness.

Submitting Institution

Aston University

Unit of Assessment

General Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Environmental Engineering

Sustainable energy research applications and solutions

Summary of the impact

This case study describes interdisciplinary impacts developed from research of the Sustainable Energy theme. They examine conversion of energy from alternative sources; from power generation using pyrolysis or biomass burners to energy harvesting of waste heat from electronic components. In all cases the aim is clear: to develop systems that make sustainable energy production a reality. This has important impacts in advancing efficiency and reliability in renewable energy technologies. Importantly, through a number of externally funded projects, this group's members have directly influenced local, national and international companies and governmental bodies. In some cases influencing decisions and having direct impact on efficiency, value from investment and even on balance sheets. In summary, they have conducted numerous energy audits, produced a minimum of 6 best practice case studies, influenced the renewable strategies of at least 52 countries, regions or industries and are recognised as the centre for biomass fuel quality assessment.

Submitting Institution

Staffordshire University

Unit of Assessment

General Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Chemical Engineering, Environmental Engineering, Interdisciplinary Engineering

Particle shape measurement: commercialisation and applications

Summary of the impact

Research into on-line control of crystallisation at the University of Leeds started in 2002 which led to a collaboration being formed with Malvern Instruments Ltd (MIL) in 2006 and subsequently to the development of a new type of instrument capable of measuring particle shape and shape- distribution. The instrument range, Morphologi, launched in 2007 has since generated sales for MIL of approximately £11 million since January 2008. The instrument is now operational within many industrial sectors and used e.g. to optimise process efficiency and enhance product quality. The success of this instrument has contributed to providing secure employment at MIL and to obtaining the "Queen's Awards for Enterprise: International Trade" in 2011.

Submitting Institution

University of Leeds

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Chemical Engineering, Interdisciplinary Engineering

Novel applications for fractionation of plant biomass in the food ingredients industry

Summary of the impact

Yield of valuable biomass fibre components and their utilization in the food industry has been maximised by novel, cost-effective and environment-friendly plant fibre extraction methods developed by BEAA. Specifically, application of these methods enabled patenting and commercialisation of oat fibre extraction by the Swedish company BioVelop, directly resulting in commercial impact through international sales of five nutritional products released since 2010. The most successful of these is produced at a quantity of 180,000 kg, or € 600,000 per year. In May 2013, world-leading food-additive giant Tate & Lyle took over BioVelop, securing the success and lasting commercial impact of the BEAA technology.

Submitting Institutions

Aberystwyth University,Bangor University

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Biological Sciences: Plant Biology

Filter Impact Case Studies

Download Impact Case Studies