Log in
Over more than two decades research conducted at Leeds has had two interrelated impacts: i) supporting the decision-making process of those responsible for reforming the school science curriculum by providing timely and robust research evidence, for example within the recent DfE National Curriculum Review in England; ii) inspiring follow-on research and development activities funded by professional organisations, whose aim is to inform and influence science education policy and practice.
Twenty First Century Science (OCR Science A) is a research evidence-informed suite of GCSE courses developed by the Science Education Group at York from 2001-6. Following pilot trials and evaluation in 2003-6, it was adopted and continues to be used by over 1200 centres (schools and colleges) in England, thus having significant impact on the day-to-day practice of several thousand teachers and on over 120,000 students annually from 2006 to date. A survey of centres in 2008 (Millar, 2010), after the first post-pilot cohort completed their GCSE courses, indicated increases of between 25 and 38 percent in uptake of the three main sciences at AS-level, over three times the national increase observed that year. The core GCSE Science course is unique internationally in addressing explicitly the widely accepted policy objective of improving `scientific literacy'. As a result, Twenty First Century Science has influenced science curriculum policy discussions and debates in the UK and internationally.
The research undertaken by Jonathan Osborne and colleagues in science education at King's has contributed substantially to contemporary curriculum and assessment policy and practice both in the UK and internationally. This programme of research has directly influenced: the Nuffield/OCR `Twenty First Century Science' curriculum, currently offered by around 1000 schools in England and Wales; the emphasis on `how science works' in the English and Welsh science curriculum; the US Framework for K-12 science education published in 2012 with its new emphasis on scientific practices; and the framework being used as a basis for the OECD Assessment of Science by the Programme for International Student Achievement (PISA) which will be administered in 70 countries in 2015.
With computing science in schools and universities suffering from an international education crisis, University of Glasgow research has driven the development of new school curriculum across the UK. The learning and teaching materials developed at Glasgow rethink the way computing science is taught, with over 10,000 pupils taking part in workshops in Scotland and 1,600 teachers in 20 countries using the materials. In the US, this research has attracted 20 high schools and 2,000 university students into programmes demonstrating new methods in teaching computational thinking. Dr Quintin Cutts has also contributed to the Scottish Qualifications Authority's assessments for the new Scottish curriculum, consulting on assessment techniques and nationwide Computing Science exam papers.
Research by Oxford Brookes University identified that teaching for inclusive challenge in primary science lessons, with an emphasis on classroom discussions, practical work and conceptual challenge, increased pupils' enthusiasm for science and also their attainment in the subject. Led by Helen Wilson, David Coates and Jenny Mant, research insights have been used to produce evidence-based professional development for primary school teachers. This has been delivered to thousands of teachers, through training events and programmes, through a dedicated website, and through training led by Local Authority advisors who have chosen to disseminate our materials. The impact on the teachers' practice has been to encourage pupils' higher order thinking in science lessons through an emphasis on questioning, discussion and practical scientific enquiry. The ultimate impact has therefore been on the learning experiences of school pupils.
Outcomes of the research conducted at the University of Edinburgh (2001 to 2007) that have had the most far-reaching impact are a strong conceptualisation of the whole learning environment (including curricula, teaching, learning support, and assessment and feedback) and its influence on the quality of undergraduates' learning. What gave these outcomes added resonance was a concern for disciplinary distinctiveness as well as more generic features; an alertness to the pervasive implications for day-to-day teaching-learning practices of mass 21st-century higher education; and a focus on enhancing as well as evaluating the student experience.
The reach of the impact extends to university teachers, middle and senior academic managers, local and national bodies with responsibilities for surveying quality and standards and, albeit less directly, students. Staff in at least 21 universities in 12 countries have used the Experiences of Teaching and Learning Questionnaire (ETLQ). The National Student Survey questionnaire was influenced by the ETLQ, and has continuing UK-wide impact on teaching through students' retrospective ratings of their experience. Project outputs were directed towards teaching staff through workshops, publications and invited presentations, followed by detailed advice on assessment and feedback of coursework.
The need to produce more science graduates to meet the ambitions of a knowledge-based economy has been recognised in several UK Government initiatives, yet despite the growth in University admissions since 1986 the percentage of students studying science has fallen. Research led by Tina Jarvis has had significant impact on the development of effective science CPD, designed to address the problem that many primary school teachers lack competence and confidence in science teaching. This research has underpinned the establishment of two CPD Centres, which have provided CPD for over 7,300 teachers, technicians and teaching assistants in the UK during the assessment period and a range of projects which have achieved sustained impact on teachers' practice and pupils' learning and engagement, regionally, nationally and across Europe, involving over 30 partners across 23 countries.
Impact in this case study focuses on developing an inclusive culture; changes in academic development programmes; and influencing national policy on inclusive learning and teaching in higher education. While student diversity has increased over the last twenty years or so, teaching methods have changed little in response. This has had a knock-on effect on student engagement and success. Research outlined here has influenced how university teachers reframe their understandings and practices of teaching and engaging diverse students. This work has reshaped continuing professional development in university teaching in the UK and internationally and has influenced national policy on inclusive learning and teaching.
The Improving Science Together (IST) project developed pupils' enquiry skills, teachers' assessment and curriculum continuity across the primary-secondary transfer in 24 schools. This research had an impact upon public policy through its inclusion on the Department for Children, Schools and Families (DCSF) website as a case study supporting government guidance on primary-secondary transfer. Its impact upon practitioners in the project schools and authorities has been to change their practice in science enquiry assessment and primary-secondary transfer; it has a continuing wider impact on the work of teachers and trainees across the UK and internationally through web-based materials and training.
The impact of this work lies in its increased engagement with, and attainment in, science and technology of pupils of varied ages and social background. It uses a broad portfolio of innovative approaches, (from novel labs to science-art theatre collaborations and community-based archaeo-astronomy projects); using visual, kinaesthetic and empathetic learning models to promote STEM learning alongside cultural enrichment and improved literacy. The work has led to changes in teacher training practice, aspects of which have been embedded locally and internationally. Its interdisciplinary nature offers new models in education for sustainable development.