Similar case studies

REF impact found 18 Case Studies

Currently displayed text from case study:

Reservoirs Under Stress: Improved productivity through geomechanics and microseismicity in petroleum systems

Summary of the impact

Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

5. Predicting the impact of faults on fluid flow in hydrocarbon reservoirs

Summary of the impact

Research on faults and fluid flow led by the University of Leeds has dramatically increased the ability of the petroleum industry to predict the impact of faults on fluid flow in petroleum reservoirs. The work has allowed the industry to reduce the risks associated with the exploration of fault- bounded reservoirs, and to identify areas of un-drained reserves in producing reservoirs. The research has won a series of important industrial and academic awards, and has provided a platform for the growth of Rock Deformation Research, a successful consultancy spin-out company whose turnover rose from £1.93 million in the period 2008-2010 to £4.0 million today.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geology, Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

08 - Assuring Hydrocarbon Flow with Improved Hydrate Management

Summary of the impact

ERPE research led to the following impacts in the REF2014 period:

  • Extending the life of the NUGGETS field (operated by Total) by three years with an increase in cumulative production of 2% (2.8 Million Barrels of Oil Equivalent, value $150M).
  • Saving $3-7M in costs associated with methanol removal from liquid hydrocarbon phase by demonstrating methanol could be removed from Natural Gas Liquids directly by molecular sieve, which played a major role in Total's decision in eliminating a de-propaniser from "methanol removal facilities", saving around £50M.
  • Hydrafact: a start-up company with a turnover of £1M in 2012 and employing 8 full-time and 15 part-time staff.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy

1) Exploring new Frontiers: Atlantic Oil and Gas Reserves

Summary of the impact

Research by the University of Aberdeen's research group on Stratigraphic Evolution of large Igneous Provinces (StratLIP) has guided the successful development of new oil-producing fields in the North East Atlantic that were previously not in production, aided by an improved understanding of the geological context within which the reserves were discovered. The research has informed every phase of exploration and development by several of the UK's leading energy companies, in one project saving the partners £600m and proving the financial viability of a major oilfield development deemed important to the UK's oil supply. The findings have contributed to an increase in the UK's energy security and the strength of the UK's oil and gas industry, especially in the context of the local economy of Aberdeen, the energy capital of Europe.

Submitting Institution

University of Aberdeen

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geology, Oceanography
Engineering: Resources Engineering and Extractive Metallurgy

2) Sand Injectites

Summary of the impact

Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.

Submitting Institution

University of Aberdeen

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

Commercialisation of Research into High Pressure Geological Reservoirs

Summary of the impact

Failure to predict and control geological overpressures during drilling can lead to operational delays costing millions of pounds, or to blow-outs causing serious environmental damage and costs running into billions. Using methodologies, knowledge and data analysis techniques developed at Durham, a spin-out, GeoPressure Technology (GPT; now Ikon Geopressure) (20 employees, revenues 2008-13: £10.8 million) has become a niche supplier to the global oil industry of expertise, training and software ("PressureView") that predicts and assess the causes of overpressure. GPT consultancy has had particular impacts for companies drilling in the North Sea, offshore Canada, Norway and West Africa where overpressure represents a significant technical challenge.

Submitting Institution

University of Durham

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

7. Sedimentology research steers high-value decisions in the hydrocarbon industry

Summary of the impact

University of Leeds Research has been used by its specialist Turbidites Research Group (TRG) to underpin consultancy work for oil companies that has, in turn, steered them to make high-value decisions. Examples include an oil well placement, the development of an oil field, and a decision to only partially develop another. The TRG has been funded by 14 oil companies since 1992, and its annual income has risen from £125k/yr prior to 2008 to £380k/yr during the REF period. It is estimated that the cumulative value of oil company decisions based on TRG research exceeds several hundred million dollars. Following the impact, Leeds have replicated the TRG business model to form new specialist industrial research groups that have each generated further impact.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

6. Peering into the pore space: digital rock physics to improve oilfield management

Summary of the impact

Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

Safe Fracking: Understanding Environmental Risk and Influencing Government Policy

Summary of the impact

Durham research on hydraulic fracturing was an important part of the UK government's reasoning for lifting the ban on hydraulic fracturing to recover gas and oil from shale, which has an estimated commercial value in the UK of £1500 billion. We demonstrated that hydraulic fractures will not be tall enough to cause contamination of water supplies where there is a sufficient vertical separation (> 600 m) between the shale reservoir and the drinking water aquifer. Durham research has also provided critical data needed by national environment agencies setting regulations, oil and gas companies seeking permission from regulators to drill wells and for local communities that are objecting to hydraulic fracturing.

Submitting Institution

University of Durham

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

Improved geological models aiding hydrocarbon reservoir development

Summary of the impact

UCL's Deep-Water Research Group (DWRG) creates knowledge transfer between research and the hydrocarbon industry. Oil companies use the DWRG's research results to generate improved in-house computer-generated hydrocarbon reservoir models, allowing them to manage, develop and value their reservoirs better. The same companies also use the research to run training courses for employees, including reservoir engineers and managers, leading to improved understanding and more informed decision-making about the management of hydrocarbon reservoirs. Improved management and development of reservoirs ultimately leads to oil companies being able to extract a greater amount of oil.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology, Geophysics

Filter Impact Case Studies

Download Impact Case Studies