Log in
Impacts: I) Operational decision making during the 2010 Eyjafjallajökull eruption, including that of the UK Civil Aviation Authority to relax airspace restrictions over Europe. II) Strategic planning for future volcanic hazards, including the 2012 classification by the UK National Risk Register of Civil Emergencies of Icelandic volcanic eruptions as a `highest priority risk'.
Significance and reach: The relaxation of airspace restrictions over Europe affected up to ten million travellers and mitigated on-going airline industry costs of up to £130 million per day.
Underpinned by: Research into the size, frequency and dynamics of Icelandic volcanic eruptions, undertaken at the University of Edinburgh (2006 — January 2013).
The 2010 eruption of Eyjafjallajökull volcano, Iceland caused prolonged closure of European airspace, costing the global airline industry an estimated $200 million per day and disrupting 10 million passengers. We have developed and tested models that predict the dispersal of volcanic ash and developed instrumentation to monitor ash clouds during flight bans and used it to test the models. Our research played a key role in establishing the need for a flight ban and in the adoption of a more flexible approach to its staged lifting as the emergency continued. It also led to increased levels of readiness and to new emergency procedures being put in place across Europe which have minimised the economic costs and human inconvenience without an unacceptable rise in the risks to passengers and crew. The new procedures safely eliminated unnecessary disruption to flights in the latter days of the crisis and during the subsequent eruption of another Icelandic volcano, Grímsvötn in 2011.
Impact type: Public Policy
Significance: The research provided evidence for formulation of government policies to ameliorate poor air quality, to which fine particulate matter (PM2.5), O3 and NO2 are the most important contributors; PM2.5 alone reduces average life expectancy in the UK by 6 months and costs £9bn-£20bn a year. The research has been incorporated into UK national guidance and policy-evidence documents for Defra, the Health Protection Agency, and the Environment Agencies.
Beneficiaries are the public and the environment.
Research; date; attribution: EaStCHEM research (1995-2011) (a) established reliable techniques to measure NO2 for a national protocol, and (b) quantified the impact of pollutant emissions on PM2.5 and O3 concentrations, and on hospital admissions and deaths. Heal (EaStCHEM) led the research and wrote, collaboratively in some cases, the reports and the work cited.
Reach: UK wide.
Technology developed at UoM on clouds and aerosols proved vital in deriving ash mass concentrations during the 2010 eruption of the Iceland volcano, verifying the Met Office model that was defining the airspace exclusion zone and predict ash loadings for the Civil Aviation Authority. The shutdown of airspace cost the airline industry worldwide an estimated $1.7bn, reaching $400m per day on April 19th. Reassurance provided by our verification allowed lifting of flight restrictions which had the immediate effect of re-opening airspace, relieving the impact on hundreds of thousands of people globally, leading to an estimated global saving to the industry of $10bn The approach has resulted in new long term airborne response capability at the Met Office.
The ash cloud from the eruption of Iceland's Eyjafjallajökull volcano in 2010 caused the cancellation of over 100,000 flights and cost an estimated £3 billion. The much larger eruption of Grimsvötn (also in Iceland) the following year caused only 900 flights to be cancelled and its economic cost was around one per cent of that associated with the Eyjafjallajökull eruption. A key factor in this huge reduction was the improved understanding of ash clouds provided by researchers at the University of Bristol. Drawing on research conducted over two decades and immediately after the Eyjafjallajökull eruption, the Bristol team were able to inform and advise airlines and major decision-makers such as the Civil Aviation Authority, the UK Government and the European Space Agency. The input has since had a beneficial impact around the globe and has directly affected decisions and research strategies made by the Met Office and Rolls-Royce regarding operational developments associated with volcanic ash monitoring and forecasting.
Research carried out at the University of Leeds has led to the development of a system for predicting severe air turbulence at airports and elsewhere. The research modelled highly localised `rotor streaming' turbulence which is too small-scale to predict using today's numerical weather prediction models. The Met Office now uses the highly efficient 3DVOM computer prediction model, based on the Leeds research, to improve its operational weather forecasting, especially for providing warnings of `gustiness' to the public and airports and to highlight risks of overturning of high-sided vehicles. In addition, the model is used by forecasters to predict dangerous turbulence at Mount Pleasant Airport in the Falkland Islands, and has led to the prevention of around five flight diversions per year at an estimated cost saving of £1.25 million.
Air pollution is a major health concern and government policy driver. Leeds researchers and colleagues have developed a detailed chemical mechanism which describes reactions in the lower atmosphere leading to the formation of ozone and secondary particulate matter, key air pollutants. The so-called `master chemical mechanism' (MCM) is considered the `gold standard' and has been used by the UK government and industry groups to inform their position on EU legislation and by the US EPA to validate and extend their regulatory models. The Hong Kong Environmental Protection Department has used the MCM to identify key ozone precursors and provide evidence for abatement strategies.
A sustained programme of epidemiological research at St George's, spanning 20 years, has informed air pollution control policies in the UK and internationally. Time-series studies of the acute health effects of daily fluctuations in air pollutants, initially in London, were extended to Europe-wide collaborations, trans-Atlantic comparisons and studies in Asian cities. Publication bias has been explored systematically in meta-analyses of published time-series results, and the adverse effects of different particulate fractions compared in a UK setting. This evidence base has contributed substantially to the current UK Air Quality Strategy and informs ongoing debates about health impacts of shorter-lived "greenhouse" pollutants.
Mercury is extremely toxic and there is a worldwide need to limit its use and manage redundant stocks. Diverse research in the UoA on mercury in the environment led to a knowledge-exchange initiative: `Integrating Knowledge to Inform Mercury Policy' (IKIMP). Since 2009, IKIMP's policy briefings and reports have had a significant impact on mercury policy at UK, European and global levels. The United Nations Environment Programme (UNEP) adopted IKIMP's decision-making framework to help countries deal with their redundant mercury. Defra used IKIMP reports to communicate the UK's position on mercury issues at EU and international levels, and IKIMP has influenced UNEP's development of the Minamata Convention, the international, legally-binding convention to limit mercury use agreed in 2013.
Novel methods in applied physical volcanology, such as expert elicitation, and hazard and risk assessment, developed mostly during the ongoing volcanic crisis at Soufrière Hills Volcano (Montserrat), continues to inform decision making, worker and public safety, and management of administrative hazard zones that control access. These methodologies have been adopted worldwide using Montserrat Volcano Observatory (MVO) as an exemplar by the World Organisation of Volcano Observatories (WOVO). Bristol researchers have advised on institutional programmes and informed international agencies, such as the United Nations and the World Bank, to reduce risk presented by volcanic hazards, and save lives. Such is the impact of Bristol's work at MVO it has been studied by up to nearly one million school children in the UK since 2008.