Log in
Research at UEA over a 20 year period in the area of olefin polymerisation catalysis has had significant economic impact through:
Studies into the deactivation and regeneration of heteropoly acid catalysts, which took place in the group of Professor Ivan Kozhevnikov at Liverpool University since 1996, resulted in the large-scale industrial application of these catalysts in BP's process for the synthesis of the widely used solvent ethyl acetate, thus making significant economic and environmental impact. This process, trademarked AVADA (for AdVanced Acetates by Direct Addition of acetic acid to ethylene), was launched in 2001 at Hull, UK, on a scale of 220,000 tonnes p.a., then the world's largest ethyl acetate production plant. The impact continued through the REF period from 2008 to 2013. In October 2011, the AVADA process produced 56% of the ethyl acetate in Europe (245,000 tonnes p.a. production capacity and $340m p.a. factory gate value), being the second largest in the world after the Zhenjiang 270,000 tonnes p.a. ethyl acetate plant in China. Over the REF period, the AVADA process produced 1.2 million tonnes of ethyl acetate worth $1.7 billion. The AVADA process makes ethyl acetate with 100% atom efficiency, avoiding the use of ethanol as an intermediate. It beats conventional processes in environmental friendliness by reducing energy consumption by 20% and feedstock losses by 35%, thus removing more than 100,000 tonnes p.a. of wastewater stream. At the heart of the AVADA process is a highly efficient heteropoly acid catalyst that is responsible for its superior performance. Implementation of measures improving catalyst stability and resistance to coking, which originated from collaboration between the Kozhevnikov group and BP Chemicals, prevented otherwise fast catalyst deactivation to create an economically viable process.
Research carried out by Malcolm Green's group in the UOA led to the spin-out of Oxford Catalysts Ltd. A large part of the company's technology is based on Green's transition-metal catalysis research, which has enabled them to develop a highly efficient Fischer-Tropsch (FT) catalyst to convert natural gas to liquid hydrocarbons. In 2010, Oxford Catalysts Group (now Velocys) demonstrated the world's first smaller-scale, modular gas-to-liquids and biomass-to-liquids FT plants which made use of the catalyst for the efficient conversion of low-value or waste gas to liquid hydrocarbon fuels. Since then, orders worth £ 8M have been taken and the company has been selected to provide FT technology for 4 commercial projects. From 2008 - 2012, the company raised over £ 60M, achieved revenue of £ 30M and now employs around 90 people.
Globally there are estimated to be 60 million cars produced each year. These all require catalysts that need testing to meet stringent emissions legislation. Catagen Ltd, a spin-out from Queen's University has developed a product for testing motor vehicle catalysts that is 85% cheaper to operate than traditional methods and represents a 98% reduction in CO2 emission from testing and an 80% reduction in energy input.
Major global customers including GM motors and Fiat have adopted this revolutionary patent protected technology and international sales growth has been recognised, winning an all- Ireland business award for BEST High Growth Company 2012
Plaxica is a spin-out from, and based, at Imperial College London with economic, societal and environmental impacts. Launched in 2008, Plaxica is a process technology licensing business which is tackling the barriers that currently prevent a wider acceptance of bioplastics; specifically improving properties, decreasing cost and using non-food feedstocks to manufacture the biopolymer poly(lactic acid), PLA. Plaxica's technology uses sustainable feedstocks to produce PLA using more energy-efficient processes, to produce a strong, high-quality polymer, the result of which is a low-cost, environmentally-friendly biopolymer for use in applications including textiles, packaging, and automobile parts. In the REF period Plaxica has raised £10m from investors such as Imperial Innovations, Invesco Perpetual and NESTA Investments. The market pull for biorenewable materials from consumers is strong and the EU predicts that PLA will substitute >10% of the existing market for petrochemical polymers and forecasts a market >$15b [A].
Catalysis is a major UK industry strength and wealth generator for the UK economy. Research carried out in the group of Professor Matthew Davidson in the Department of Chemistry at the University of Bath resulted in the development of titanium and zirconium alkoxide catalysts for use in three industrial polymerisation processes and patented by the UK companies ICI Synetix and Johnson Matthey. Patents have recently also been acquired by the Indian multinational Dorf Ketal and filed by the Dutch multinational Corbion Purac. The research has resulted in the adoption of new catalysts in industry leading to increased turnover, onward dissemination and implementation of the Bath intellectual property. It has also generated £4.6M from sale of intellectual property and an increase in generated sales of new, sustainable titanium catalysts that replace heavy metals such as tin, antimony and mercury in major industrial processes. The intellectual property and process developments have been implemented globally in the poly(ethylene terephthalate) (PET) and poly(urethane) (PU) plastics markets, worth $23B and $33B, respectively, in 2010.
The selection of ligand(s) for the transition metal complexes that are frequently employed as catalysts for the production of fine chemicals is a key activity ultimately governing the financial viability of the process. Traditionally, the method for discovery of ligands with the appropriate balance of cost and efficiency has been achieved empirically via screening. This Impact Case Study reports on the development of a novel methodology for the qualitative and quantitative analysis and prediction of the effect of ligand structure on the catalytic activity of late-transition metals. It has been applied in process and discovery chemistry in pharmaceutical and agrochemical industries in the UK (and beyond). The analysis allows rapid, and therefore cost efficient, identification of ligands and catalysts with the potential to bypass intellectual property issues.
The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.
Cardiff University, through developing and patenting a commercially viable synthetic route to a catalyst, has enabled the application of a new process, the Alpha Process, for the production of methyl methacrylate (MMA), a key commodity precursor to Perspex. The Alpha Process has had economic and environmental impacts.
Lucite International, the world's leading MMA producer, has invested in major Alpha Process production facilities in Singapore and Saudi Arabia, benefitting from a production route which is more efficient, more reliable and cheaper than conventional routes.
The Alpha Process also brings environmental benefits, as it does not rely on the use of corrosive and toxic feedstocks, such as hydrogen cyanide, which are associated with conventional MMA processes.
Research at Warwick by Professor David Haddleton's team led to the discovery of a new family of catalysts for living radical polymerisation. A spin-out company, Warwick Effect Polymers Ltd (WEP), was established to develop this research and received a total of £3.77M investment. Supplemented by income from contracts, and operating in purpose-built laboratories on the Warwick Science Park, WEP employed 10-15 people and spent £3.0M over the REF2014 period developing a substantial patent portfolio. WEP's commercial success and intellectual property in polymer therapeutics and nanomedicine led to its acquisition by PolyTherics Ltd in 2012.