Similar case studies

REF impact found 13 Case Studies

Currently displayed text from case study:

MULTISENSORS – Noncontact water pollution monitoring

Summary of the impact

Research at the University of Manchester has led to the provision of cost effective instruments for monitoring water, industrial and environmental pollution. The underpinning research on chemical sensors conducted in the unit was protected by patent, and in 2007 Multisensor Systems Ltd was spun-out in-order to meet the needs of the water industry and has grown to employ 6 people in 2013. Currently this is the only commercially available instrument sensitive enough to monitor low concentrations of hydrocarbon pollution and is used by major UK water companies to prevent risk of environmental pollution hazards with mitigated losses valued at more than £100m.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Engineering: Environmental Engineering

Case Study 6 : Body Sensor Networks for Healthcare and Sports (BSN)

Summary of the impact

Body Sensor Networks (BSN) research developed novel sensing algorithms and technology suitable for on-body pervasive sensing suitable for healthcare, well-being and sporting applications. The main impact includes:

  • Regulatory approval of BSN devices from the Federal Communication Commission (FCC) in 2012 and award of the CE mark in 2009.
  • Creation of the BSN technology spin-off company Sensixa in 2007 to manage licencing and commercialisation of the technology.
  • Adoption of the technology for training within Team GB in preparation for Winter Olympics 2010, Summer Olympics 2012 in London and other major international sport events.
  • Established the use of the technology in a clinical setting.

Submitting Institution

Imperial College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Human safety and economic benefits from commercialisation of a unique gas detection product

Summary of the impact

New commercial gas sensing technology developed from research at the University of Strathclyde brings extensive technical, operational, safety and cost benefits to applications such as mine safety and leak detection in methane production, storage, piping and transport systems. World-wide commercial sales (in Japan, China and the USA) began in late 2010 through a spin out company, OptoSci Ltd. Sales are growing and have amounted to a total of £250k since launch plus a customisation contract for £193k, leading to jobs sustainability and growth. In addition to economic impacts, the technology also brings health and safety benefits in the gas distribution and mining industries through human safety assurance in the event of gas leaks / build up.

Submitting Institution

University of Strathclyde

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies
Medical and Health Sciences: Neurosciences

Gene Sequencing on silicon: the Ion Torrent Personal Genome Machine

Summary of the impact

The development of microelectronic sensor arrays for biological applications, pioneered at the University of Glasgow, is central to a unique gene sequencing system developed by Ion Torrent. The Ion Torrent personal genome machine is a bench-top system that, compared to optically mediated technologies, is cheaper and easier to use. Ion Torrent was founded in 2007 and bought by Life Technologies in 2010 for $725M; they, in turn, were bought by Thermo Fisher for $13Bn, citing Ion Torrent as a motivation. Ion Torrent now has 62% of the bench-top sequencing market, estimated to be worth $1.3Bn in 2012.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Integrated Healthcare Sensors Underpin Global Connected Health

Summary of the impact

NIBEC connected health related research over the past 20 years has led to three high value spin- out companies. Their success is based on exploitation of over 35 NIBEC patents in medical sensors and electro-stimulation devices. Together these companies are currently valued at almost £100m, employ over 150 skilled people and have engineered medical innovations that have had global beneficial impact on health costs and patients' lives over these past four years. Our research is closely linked with international partners, commercial and clinical, has impacted local government policy through our leadership of the European Connected Health Alliance and has resulted in the £5m industry-focussed Connected Health Innovation Centre established at NIBEC.

Submitting Institution

University of Ulster

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering, Electrical and Electronic Engineering

LightTouch: Low-cost, rapid oil and gas prospecting technology

Summary of the impact

The future of the world's energy supply is a global concern, as the demands of a growing population rise and the ability to locate precious oil and gas resources becomes increasingly difficult. Researchers at the University of Glasgow have made a fundamental contribution with the development of LightTouch — a Shell proprietary ultrasensitive, technologically advanced gas sensing survey method. In fourteen years of cooperation with Shell, the University of Glasgow has delivered multi-million dollar savings and improved the delivery of efficient survey data, substantially decreasing the economic impact associated with unsuccessful drilling.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Environmental Engineering

Eco-Friendly Optimisation of Ceramic Membrane Reactor for Monetising Stranded Natural Gas

Summary of the impact

Fifteen years of ceramic membrane research at Robert Gordon University and the applied development programme by the RGU spinout Gas2 Ltd have culminated in the development of the Gas2 pMR™ CPOX process and its new GTL reactor. This technology has captured the attention of major global energy investment company Lime Rock Partners for possible onshore and offshore deployment addressing the monetisation of stranded gas and to avoid flaring and venting of unwanted associated gas. The economic impact is £17.2 million in equity investment during 2008- 2013 with concomitant impacts of new processes and employment opportunities at Gas2, with environmental impact for the oil & gas industry from eco-friendly handling of stranded natural gas.

Submitting Institution

Robert Gordon University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Materials Engineering

Electric Potential Sensor Technology – From Fundamental Physics to Product

Summary of the impact

A ground-breaking range of innovative sensor products — the EPIC Sensors — has been developed and marketed world-wide by Plessey Semiconductors Ltd. The EPIC Sensors allow contact-free measurements of electric phenomena, initially aimed at the health, sports and automotive markets. They operate on the non-invasive, low-cost, generic, award-winning Electric Potential Sensor (EPS) technology invented and developed at Sussex as a spin-off from fundamental low-temperature physics research. Income to the University from licence fees, costs and royalties started during 2012. Sustained industry engagement with key strategic partners in the medical, forensic, security, materials testing and geophysics sectors, including government organisations, industry and academia, is leading to a wider awareness and adoption of this novel technology.

Submitting Institution

University of Sussex

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Medical and Health Sciences: Neurosciences

Case 3 – Ultra-Low-Power Electronics for Healthcare Applications

Summary of the impact

Professor Chris Toumazou FRS and his team at Imperial College have developed biomedical technologies based on ultra-low-power CMOS and ISFET electronics to provide the medical community with the means to rapidly diagnose, monitor, and treat diseases with confidence and at low cost. Since 2008, the impact of this research has been to:

I1) spinout a start-up company DNA Electronics (DNAe) to deliver point-of-care products to quickly recognize genetic diseases and identify potential poor drug interactions;

I2) enable Life Technologies (formerly Ion Torrent) to develop the Personal Genome Machine (PGM) that have generated $100m in sales (in the 18 months since its launch) using DNAe's core semiconductor sequencing IP;

I3) save lives by using the PGM in clinical and public health applications;

I4) spinout a second start-up company (Toumaz) that has released SensiumVitals®, a FDA-approved and CE-marked ultra-low power system for wireless monitoring of patient vital signs;

I5) provide early warning of adverse physiological events in clinical settings using the SensiumVitals® platform resulting in improved quality of patient care and reduced demand on intensive care provision in hospitals internationally.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Extended life of industrial gas turbine blades using novel coatings

Summary of the impact

This research enables longer component lives for industrial gas turbines and jet engines, and development of new protective coating systems. Siemens and Rolls Royce have improved their selection of materials systems used in components in the hot gas paths e.g. blades, vanes, discs, and seals. Degradation mechanisms in operating turbines, or anticipated in future materials systems, limit the lives of these components and the efficiencies of systems. New functionally graded coatings were created that are highly resistant to hot corrosion and oxidation. Methodology has been adopted in ISO standards BS ISO 26146:2012, BS ISO 14802:2012 and ISO/CD 17224.

Submitting Institution

Cranfield University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies