Log in
Increasing use of mobile phones and the consequent congestion of the original bands have meant that over the last decade, additional bands have been released, and all current mobile phones need to operate at up to five different frequency bands. Professor Hall's group supported by £160k from British Telecom Labs, showed how to design a multi-band planar inverted F antenna, using slots in the antenna top plate. The published papers have since been quoted in many industrial patents and widely acknowledged to be the first publications of the antenna. Nokia, who had the largest market share in the REF period, based their antenna designs on the slot concept, and hence a large proportion of the several billion phones in the world today use this antenna, with a financial value of many millions of pounds.
This case study describes how spin-out company, Antrum Ltd (founded in 2001) realises the commercial potential of Loughborough University's extensive antenna research. Antrum has been consistently profitable typically turning over between £150K - £300K. Examples of how research projects, through industrial partnership, have evolved to commercial products illustrate the success of Antrum's business model and the effectiveness of the partnership between the University and its spin out company. The Case Study describes how the University's wireless communications research, between 1998 - 2011, consistently challenged accepted antenna design to meet demand for products that are more efficient, robust, smaller and commercially viable.
We have developed enabling technologies for the defence, automotive and identification industries, the health service and the wider community where our contributions enable end users to maximise performance for a given cost. Work on Frequency Selective Surfaces (FSS) produced sub-reflectors for aerospace (BAE Systems — mm/sub-mm satellite radiometers for earth observations). Small antenna and RFID work led to new products in the automotive industry (Harada Industries), on-line fuel management systems (Timeplan Ltd), wireless smoke detectors (EMS Group), connectors (Martec), antennas (Panorama Antennas Ltd) and for Digital TV (Mitsubishi). Millimetre-wave over fibre systems linked antennas have supported the acquisition of new astronomical data, through the international ALMA (Atacama Large Millimetre Array) project, facilitating deeper public understanding of the universe.
State-of-the-art radio systems require antennas that are a) able to cover an ultra-wide range of operating frequency bands, and b) compact and yet robust enough to be mounted in settings that range from satellites to the human body. Our pioneering work in this area has led to the significant contributions to the UK Ofcom Spectrum Framework Review and the developments of new products and business opportunities, new technologies for assessing the EM emission on the mobile handset and for smart meter deployment, and wearable antennas deployed in the battlefield to reduce the load and smart communications for dismounted soldiers.
In this case study, two specific examples of impact are reported. One is cost-effective and high-performance smart antennas for the offender tagging system and marine navigation system for Guidance Navigation Ltd (Guidance). This collaboration has resulted in new and leading products and also helped the company to win a range of contracts. The other example is the development of a novel intelligent drilling system_for Zetica Ltd. This system can detect deeply buried unexploded ordinance and other objects. It has given Zetica a unique new product to significantly improve operational safety and win business worldwide.
Carrier mobility is a key parameter for the semiconductor industry, but its measurement is characterised by poor accuracy and unreliability for advanced transistors. The Microelectronics Research Group (RG1), working with the Logic Devices Consortium at IMEC (Inter-University Microelectronics Research Centre in Leuven, Belgium), developed a new technique that overcomes these problems, implemented it on industrial-standard equipment provided by Keithley Instruments (a US company based in Cleveland, Ohio), and prepared the application notes and software. This benefits test engineers in the semiconductor industry through significant improvement in the accuracy, reliability, cost, and efficiency of measurements. Keithley is disseminating information to its global customer base and is highlighting it as strength of its instruments in the promotion.
WiFi technologies are integral to our internet-connected lives. Most of the world's wireless data passes over one of the global WiFi standards. For more than 20 years the University's Communication Systems & Networks (CS&N) Group has contributed towards the development of these technologies, and to products that conform to them.
The WiFi standards are vital since they ensure that computers, mobile phones, set-top boxes and tablets all use the same waveforms and protocols to wirelessly connect to the Internet. They ensure inter-operability between different products and manufacturers.
CS&N pioneered the use of multicarrier modulation and multiple antenna (MIMO) technologies. These underpin the current WiFi standards (802.11g/n), ratified in 2003/2009. Research on wireless and video communications led, via spin-out ProVision Communications, to a range of robust wireless-video products for high definition video transmission in the home. These products are now manufactured and sold by Global Invacom.
In partnership with Farncombe, the Group has developed a defacto WiFi test standard. This combines the Group's rigorous WiFi antenna validation & verification measurements with its system level in-home modelling and measurement tools. [text removed for publication]. To date, more than five million WiFi routers have benefited from the University's WiFi test process.