Log in
Research on high-voltage power devices by the University of Cambridge Department of Engineering (DoEng) was commercialised by its spin-off company, Cambridge Semiconductor Limited (CamSemi), which, in the REF period, has:
CamSemi chips are more efficient than traditional linear power supplies. The CamSemi chips that were produced before the end of the REF period are estimated to save of the order of 100GWh of electricity and 50,000 tonnes of CO2 emissions per year in total.
This case study concerns the long term (energy) sustainability of emerging winemaking regions. Underpinning research in energy efficiency and renewable technologies informs the case study in determining energy usage and benchmarks, development of energy guidelines/policy, implementation by national professional bodies and adoption of energy best practice by the local industry. Impact is through the adoption and application of benchmarks by winemaking associations, directly influencing (through policy, regulations and standards) the energy expended in making wine. The study is underpinned by international publishing accolades (Solar Energy `Best Full Length Paper in Photovoltaics', Mondol et al, 2005) and a highly prestigious personal Royal Academy of Engineering Global Research Award to Smyth.
The Leicester Variwave project, in relation to electrostatic dust precipitation, utilises a novel high voltage, high frequency, high power transformer within the power supply, which has enabled cuts in industrial emissions of ~50 per cent and considerable cost savings. Most new-build power stations and many other industrial sites now use technology based on that developed in Leicester. As well as fly ash and dust, the technology has the ability to trap sub-micron particulates thought to be partly responsible for the increase in the number of asthma cases during the past few decades. The MD of [text removed for publication] states `Through publications made by ...Leicester ...we were interested to learn how the team designed their high voltage transformer, and how that transformer operated with the high frequency, high power switched-mode electronics. They achieved that `Holy Grail' combination [of high voltage, frequency, high power] in a 70 kW switched-mode power supply (SMPS) running at 20 KHz and at 50 kV. The publication in the IEEE Transactions on Power Delivery was very helpful, and enabled us to choose the direction when pushing the design boundaries in developing our own high power, high voltage technology for electrostatic precipitators'. Dr Devine, a key member of the Leicester team between 1995 and 2000, was employed by [text removed for publication] in 2001 purely on the basis of his knowledge of Variwave. [text removed for publication] now have 200 units in operation. In 2002 Dr Devine was head-hunted for his knowledge of Variwave and moved to [text removed for publication], who also developed commercial units. The uptake of the technology has been growing steadily since 2001. Exemplar data from one company on the associated reduction in emissions shows 195 switched mode power units installed in boiler plants worldwide by 2004 gave a reduction of around 60%. A 60% reduction in emissions is equivalent to a reduction from 40 mg.m-3 to 16 mg.m-3 of flue gas particulates. Since 2004 to date there are now estimated to be at least 5000 units installed worldwide.
Research at the University of Strathclyde between 2003 and 2008 directly produced the following impacts from 2008 onwards: 10 wind farms (17 MW aggregate capacity) connected to the Orkney power network from 2009 to 2013 with accompanying economic and environmental benefits; Orkney power network reinforcement deferral saving of £30M from 2009 with repeat deployments of Active Network Management (ANM) technology in other UK power networks; spin-out company formed in September 2008 with total revenues to date of £6.1M, equity investment totalling £3.5M and 35 FTE jobs created; provision of new power system options for long term network plans impacting the 2013 investment decisions in distribution network companies; contribution to the emerging Smart Grid business sector in the UK and overseas from 2008.
Research into photovoltaic (PV) system performance carried out at the Unit has provided informed guidance and performance benchmarks used in:
The Power Systems research team at Imperial made pivotal contributions in the design of power transmission networks, the equipment within these networks, and non-conventional electricity systems. Since 2008, the impact of their research has been to:
I1) influence government policies by contributing to House of Common Select Committee (2010);
I2) support the Fundamental Review of Supply Quality and Security Standards;
I3) assist National Grid in defining new investment affecting £3bn worth of network assets now approved by the regulator (2013);
I4) provide tools to develop the first offshore networks design standards in 2008, saving an estimated £500m by 2013 to date and a projected overall saving of £1-2bn by 2020;
I5) advance Alstom's design concept for next generation HVDC converter stations for offshore wind connection from TRL 1 in 2009 to TRL 4 in 2013 supported by 3 new patents;
I6) enable UK Power Network to plan network investment of £1.18bn and make savings of £130m (2013) through applying new technologies and demand response;
I7) facilitate a scheme for off-grid energy kiosks for electrification in rural Africa yielding social gains and a business opportunity.
As standard commercially-available imaging systems were unable to deliver the performance necessary for our astronomy research programmes, we formed a partnership with Andor Technology to develop two new specifically-tailored novel imaging systems: one to allow high-speed, high cadence imaging over an array of detectors whose capture times were precisely synchronised (for solar research); one to combine large format CCD detectors with a thermoelectric deep cooling design, removing the need for a separate, expensive cooling system (for exoplanet research). This partnership contributed to the development of new imaging products within Andor Technology (2008 — present), for which the company estimates a current total revenue value of over £1.7M per year. It has also helped Andor to maintain a leading position in the scientific camera market on a global scale, via the press and industry coverage obtained for the new technology development.
The supply of electrical energy to centres of demand is an increasingly important issue as our power generation sources decarbonise. Without innovation in our use of high voltage cables, security of supply to our major cities cannot be guaranteed. Our research has:
The power systems laboratory at the University of Aberdeen has developed new converter topologies that have applications in connecting MW size DC power sources with DC transmission/distribution grids. These converters resolve very challenging questions of fault isolation on high-power DC networks. Scottish Enterprise funded a proof of concept project which developed a prototype, and confirmed the feasibility for various applications with interconnecting renewable power sources. Impact from the research is ongoing. Initial impact has been on public policy and services, where policy debate has been informed by our research evidence; and where decisions, regulations or guidelines have been informed by our research. Impact has also been generated for practitioners and professional services, where both a professional body and a company have used research findings in the conduct of their work, their practices have changed, and new or improved processes have been adopted as a direct result of research findings.
The technology has attracted the attention of George Adamowitsch, European Coordinator for the working group for offshore and onshore grid development. He has described the Aberdeen research in his annual report to EU parliament in 2010, and the lead academic, Professor Dragan Jovcic, now sits on the Working Group for onshore/offshore grid development, developing plans for the European DC supergrid. In addition, this research has contributed to Working Group B4.52 of the International Council on Large Electric Systems (CIGRE), and their major technical brochure "HVDC Grid Feasibility study". Finally, the research has been analysed by the French power company RTE (Réseau de Transport d'Electricité). As a result of the research findings the company has adapted their approach to the planning of major offshore wind farm developments, resulting in a re-definition of the company research and development strategy.
Our work has facilitated the creation of a variety of innovative control strategies for First Hydro Company (FHC), owner of Europe's largest pump storage plant. FHC's two plants are both supported by the simulation platform developed as part of our research and responsible for balancing load variation on the National Grid. Critically, FHC's business model relies on their ability to provide ancillary services within a short time. Our research produced a comprehensive plant model, and was used to enhance the dynamic response of the Dinorwig station; this resulted in improvement in National Grid stability and has provided competitive advantages to FHC since 2008.