Log in
The isolation and characterisation of graphene by Geim and Novoselov demonstrated its potential to underpin disruptive technological change across an incredibly broad range of industries. This resulted in rapid global uptake of new technologies in the REF period, with at least $200m recent commercial investment in graphene production. Blue-chip companies have also made significant investments leading to the generation of 7740 industrial patents. The first set of graphene-based products has reached the market with revenues already exceeding $10m per month. This commercial activity has been matched by global shifts in public research and innovation funding of at least $2.4bn, as governments have moved to facilitate graphene research and commercialisation.
The Thin Film Centre (TFC) group at UWS pioneered thin film materials and processes for plastic electronics with Dupont Teijin Films (DTF) Ltd and Plastic Logic (PL) Ltd over a period of nine years. This work was pivotal to the growth of PL from a start-up position resulting in the first all-polymer e-book reader and was the basis of a world leading position in the supply of specialised substrates for DTF Ltd.
An advanced plasma source based on novel engineering has been developed and proven in conjunction with Thin Film Solutions Ltd (TFSL). This source is retrofittable to existing electron- beam deposition systems and significantly improves the properties of thin films and advanced optical filters. TFSL has produced commercial products based on this source and has achieved sales to date of £2.3 million (letter from CEO of TFSL provided) as the new technology has been widely adopted in the optical filter industry.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
Research in the Mechanical Engineering Department has led to a series of experimental techniques for measuring the fundamental properties of lubricants in a scientific manner. These include measurement of the thickness, structure and properties of fluid and solid lubricating films, as well as the friction, fatigue and wear behaviour of lubricated surfaces.
Measuring instruments based upon these techniques have been commercialised by a spin-out company, PCS Instruments, which has now become the largest supplier of Tribology test equipment in the world. Over the period 2008-13 it had a turnover of £39.8M (£7.63M in 2012-13). The research has changed the way in which lubricants and lubricant additives are developed, with PCS test rigs in use in all the major lubricant and additive companies, as well as many University tribology research and National Standards laboratories. The techniques have enabled the development by industry of a new generation of high-efficiency lubricants for automotive applications.
Research at the University of Manchester has supported the development of drinks vending systems for Mars Drinks. The research has demonstrated that a detailed understanding of the relationship between the structure and properties of the polymeric components is vital for the design and performance of two drinks vending systems, Flavia (single-portion fresh beverages) and Klix (in-cup beverages). This research has contributed to major improvements in materials selection, quality control, cost reduction and performance. These drinks vending systems were developed originally in the UK in collaboration with the University of Manchester, with Flavia now also manufactured in the USA and marketed worldwide by Mars Drinks with an estimated sales value of > US$400m per annum.
The provision of professional analysis and advice has created an economic impact of $0.6M with AVX Ltd, a leading supplier of electronic components within the Kyocera Group. This information was pivotal to AVX Ltd retaining a major contract, for multi-layer ceramic capacitor (MLCC's) supply through to the automotive manufacturer Volkswagen Group. Our intervention addressed a reliability issue in the MLCCs and allowed them to improve processes and revise manufacture protocols. The impact drew on previous collaborative research with AVX Ltd and innovative methodologies for preparation of micro and nanoscale samples of materials in capacitors in academic research.
This research, performed in the Department of Mechanical Engineering at Sheffield, has provided a unique method for measuring oil films in real engineering components like ball-bearings, thrust pads, seals, and piston rings. Adopted by leading industrial customers across Europe, the resulting benefits include the development of new seal designs and piston ring-pack products as well as trouble-shooting pump failure. The spin-out company, Tribosonics Ltd., which manufactures the instrumentation under licence and provides consultancy services, currently employs eight people and turned over £450k in 2012 (£600k expected in 2013). Customers include [text removed for publication] who have seen their new ring pack reduce oil consumption by up to 40%, saving $160K per year per engine and [text removed for publication] whose seals designed and tested using our methods have 10% of the leakage of conventional seals.
Thin-film optical filter research at the University of Reading is a unique and enabling technology that permits astronomers and meteorologists to gather data leading to increased understanding of atmospheric and astrophysical phenomena. Infrared filters are the key optical components in many satellite telescopes for Earth observation, planetary research probes and infrared astronomy. They form the eyes of the instrument to separate light into wavebands in order to measure temperature, gas composition, water vapour, dust clouds and aerosols. This data is used to generate accurate atmospheric and environmental circulation models for global climate studies, and measure properties of the universe for stellar and planetary formation theories.
Research in atmospheric pressure (thermal) chemical vapour deposition (APCVD) at the University of Salford demonstrates the following impact: