Log in
Research on Frequency Selective Surface (FSS) structures has led to major advances in the design and manufacture of the world's most advanced payload instrumentation for use in Earth observation satellites. This technology has provided the core element of the radiometer instrumentation needed for more accurate global weather forecasts and better understanding of climate change. The advances described have made it possible to combine all of the different functions of the MetOP-SG radiometer into one instrument, thereby halving the footprint of the satellite payload resulting in a [text removed for publication] cost saving.
The University of Southampton's distinguished body of work on the design of technology for gamma-ray detection and imaging has informed new counter-terrorism practices. Technological advances arising from the research have been crucial to delivering significant benefits in the fields of homeland security and nuclear safety — the latter particularly in the wake of the 2011 Fukushima disaster. A spin-out company, Symetrica, currently employs 26 people in the UK and the USA, has a forecast turnover of more than £10 million for 2013-14 and has been recognised as an example of best practice. It is a technological leader in the field of radioactive isotope identification.
A €470 million earth observation mission (BIOMASS) based on research carried out in the University of Sheffield's Centre for Terrestrial Carbon Dynamics was approved by the European Space Agency Programme Board on 7 May 2013, for launch in 2020, to measure the biomass and height of the Earth's forests, globally, at a scale of ~200 m. The twenty European member states have committed contributions to fund the mission, representing a significant reallocation of public budgets. The mission was selected as the most scientifically convincing of the six initially shortlisted in 2005 (further down-selected to three in 2009), and is the only one that will be funded. The project has already led to two European industrial consortia receiving some €5.6 million for studies to demonstrate feasibility. A further €277 million of the €470 million approved funding has been specifically earmarked for industrial spending to prepare for the mission.
We demonstrate a sustained record of the highest quality public engagement with physics, evidenced by the selection of our research for the Royal Society Summer Science Exhibition on eight occasions in six successive years (2008 - 2013). Collectively, these exhibits have received more than 94,000 visitors, increasing the knowledge of physics and interest in physics of school pupils and the general public. Each exhibit has produced a lasting legacy of on-going public engagement, influencing, for example, the career choices of an estimated 60,000 students.
In collaboration with film-maker Brady Haran we have developed the YouTube channel Sixty Symbols to present topics related to research in physics to the wider public. Since the 2009 launch of Sixty Symbols we have posted 212 videos, which have amassed 21.2M views, over 200k comments, over 266k subscribers and a content approval rating of 99.4%, placing Sixty Symbols in the top 0.01% of all YouTube channels. The success of Sixty Symbols led to commissions from Google and STFC for the launch of additional science-focused YouTube channels, and to the formation of the company Periodic Videos Ltd by Brady Haran (2011). Quantitative evidence gathered by management consultants, O'Herlihy & Co, demonstrates Sixty Symbols' global reach, and significant impact on the attitudes, scientific understanding and career aspirations of its audience. Overall the impact has been on society, culture and creativity through the promotion of public engagement and discourse on science and engineering, and through educational use in schools.
This case describes the impact of Professor John D. Barrow's research into the value of the cosmological constant and the constants of physics. The impact occurred through extensive engagement with the public via talks and public lectures, online talks and articles, newspaper and magazine articles, books and radio broadcasts. The engagement led to widespread public interest and increased public discourse in the UK and beyond, the impact being especially strong in Italy. The research has inspired young people, teachers and the general public internationally to follow cosmological developments.
Through our unique engagement with school students and teachers, astronomy research conducted by the Astronomy Unit (AU) at Queen Mary has had demonstrable impact on society by influencing, enhancing and enriching science-related education. Our activities contribute to the STEM agenda, providing support for a key government policy related to long-term economic growth. The Cassini Scientist for a Day competitions and our Media Space summer schools have raised aspirations and increased awareness and knowledge of astronomy, and have improved the scientific thinking and writing skills of over 300 school pupils from UK-wide and local secondary schools. Approximately 100 teachers have engaged with the AU's research through our Astrophysics Summer Schools. Teachers' knowledge and understanding of modern research has been developed, transforming their teaching practice by providing them with the motivation, resources and confidence to tackle complex issues in the classroom and through extracurricular activities. In survey responses, 90% of teachers report that their practice has been transformed as a result of engagement with the AU. Some teachers describe plans to introduce GCSE Astronomy into their curriculum and to establish astronomy clubs in response to attending the summer schools.
As standard commercially-available imaging systems were unable to deliver the performance necessary for our astronomy research programmes, we formed a partnership with Andor Technology to develop two new specifically-tailored novel imaging systems: one to allow high-speed, high cadence imaging over an array of detectors whose capture times were precisely synchronised (for solar research); one to combine large format CCD detectors with a thermoelectric deep cooling design, removing the need for a separate, expensive cooling system (for exoplanet research). This partnership contributed to the development of new imaging products within Andor Technology (2008 — present), for which the company estimates a current total revenue value of over £1.7M per year. It has also helped Andor to maintain a leading position in the scientific camera market on a global scale, via the press and industry coverage obtained for the new technology development.
Stars `r' Us! (SRU) is a touring exhibition conceived in 2004 by Professor Martin McCoustra to engage the public with astrochemistry. SRU has been updated frequently, most recently in 2010 to include on-going work at Heriot-Watt University (HWU). SRU has contributed regularly to major science festivals, with independently corroborated strong impact on public attitudes. Over its lifetime, active researchers have interacted directly with an estimated 11,000 visitors, most of whom were teenagers. SRU has further indirect reach through a widely distributed teacher's pack. It is also a valuable element of the public engagement programme at HWU which has seen demonstrably improved recruitment to chemistry programmes over recent years. SRU has engaged with the EU Commission through an ESF co-sponsored event: laboratory astrochemistry has recently achieved preferred status in a Horizon 2020 foresighting exercise.
Our high profile astronomy research discoveries in areas of public interest have allowed us to substantially increase the engagement of the public with science. Media appearances have led to a philanthropic donation of £200k to promote our science, the most successful public event series ever in Northern Ireland (engaging around 2000 people), a strategic partnership with Ireland's award winning science education centre W5 (reaching 26,000 people), and a 49% increase in applications to physics based degrees from NI students to UK HEIs. In 2008 we set three simple targets to substantially increase the public awareness of science and physics. The first was to increase our presence in the mass media (print, radio, TV, internet) to promote scientific research, and we have regularly reached audiences in excess of 295,000. The second was to increase the numbers of people attending science talks and events. The third was to substantially increase the application rate of school students to study physics and mathematics degrees. Through our outreach and engagement programme we have met, and surpassed, all of these targets. The impact of our research and our public outreach programme is a quantifiable societal change. Substantially more NI school students are now studying physics at third level UK HEIs.