Log in
Impact: EaStCHEM spin out Albachem (1994), subsequently incorporated into the Almac group, enabling the latter company to become a world leader in the provision of chemically synthesised proteins.
Significance: Chemical synthesis is competitive with recombinant methods for commercial production of the therapeutic polypeptides that represent ~50% of drugs in big pharma pipelines and have a market value in 2008 of over $13B. The value attributable to Ramage's methods for polypeptide syntheses over the REF period is estimated at approximately £6M.
Beneficiaries: Drug manufacturers, contract research organisations, patients, clinicians.
Research: Studies (1993-6) led by Ramage (at the University of Edinburgh) on new methods for high-yield total syntheses and purification of long polypeptides.
Reach: Almac's protein-manufacturing team remains in the UK with 24 staff members. The Almac Group, headquartered in N. Ireland, has 3300 employees globally (1300 outside UK) and sells to 600 companies worldwide.
UCL research has been instrumental in creating critically needed new biocatalysts and bioprocess technologies for industrial biocatalytic process development. These have impact across the UK chemical and pharmaceutical sectors. BiCE enzyme technologies have been exploited through the formation of a spin-out company, Synthace, generating investment of £1.8m and creation of 7 new jobs. Commercial utilisation of BiCE enzymes by company partners has led to environmental benefits through sustainable syntheses and reduced waste generation. BiCE high-throughput bioprocess technologies have also been adopted to speed biocatalytic process development. UCL established a parallel miniature stirred bioreactor system as a new product line for HEL Ltd. [text removed for publication]. Related knowledge transfer activities have also benefited some 157 industrial employees from over 50 companies since 2008.
Queen's University Belfast has developed a number of biocatalytic processes for the production of pharmaceutical intermediates which have been applied commercially. The most significant involved Vernakalant, a new drug for treatment of the most common form of irregular heartbeat, now available in the EU, and currently awaiting approval in the USA and Canada. In addition, QUB has sold £300,000 worth of bioproducts and through the collaborations with Almac Sciences facilitated the initiation of their biocatalysis business which currently is a multi-million revenue earner for Almac Sciences and employs 30 staff, including 15 PhD graduates from the Queen's group.
Research on high-voltage power devices by the University of Cambridge Department of Engineering (DoEng) was commercialised by its spin-off company, Cambridge Semiconductor Limited (CamSemi), which, in the REF period, has:
CamSemi chips are more efficient than traditional linear power supplies. The CamSemi chips that were produced before the end of the REF period are estimated to save of the order of 100GWh of electricity and 50,000 tonnes of CO2 emissions per year in total.
Through research carried out under an EPSRC Teaching Company (KTP) award, we assisted an SME, CellPath, to develop the capacity to manufacture a novel set of dyes (Ortho Stains) for use in the Papanicolaou cervical smear test and other histological procedures. The company, previously mainly known for manufacture and sales of laboratory plastics etc, rapidly become the UK market leader in cytology stains, with over 50% of the domestic market, and exports to Finland, France, Italy, Japan, Norway, Sweden and the USA. As a result the company has increased turnover by 400% and the workforce has grown from 5 to 65 employees.
The research on the use of single source precursors in quantum dot synthesis undertaken by Professor Paul O'Brien in the Department of Chemistry at Imperial College between 1994 and 1999 resulted in papers and a patent which led to the formation of Nanoco Group PLC, currently a world-leader in the supply of quantum dots (QDs). Quantum dots have applications in backlighting for LCD displays, LED general lighting and thin film solar cells. Nanoco was listed on AIM on the London Stock Exchange in 2009 and by January 2013 Nanoco employed 78 people, had annual revenue of £3 million, and had signed agreements with several major companies in the US and Japan including Dow Chemical, Osram and Tokyo Electron.
The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.
The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.
The European Union Cosmetics Directive (adopted in 2003) banned the use of animals for testing cosmetic ingredients and the final deadline for compliance was March 2013. The development of alternative methods of safety assessment was therefore essential to ensure both consumer protection and viability of the cosmetics industry. Our research has focussed on the development of computational alternatives to animal testing, including the identification of structural alerts that have been encoded into computational workflows to support toxicity prediction. These methods have delivered tools to the cosmetics industry in Europe and worldwide to enable them to comply with the directive and develop new products. Our findings have also been used to inform thinking and policy in Europe and to develop a new approach to the safety assessment of cosmetics.
A novel conjugation technology has been developed to enable site-specific attachment of polyethylene glycol (PEG) to proteins to extend the in vivo half-life of biopharmaceuticals. The technology has been commercialised by an Imperial College spin-out company, PolyTherics Limited. In 2013, the merger of PolyTherics with Antitope Limited, enhanced the company's biopharmaceutical technology development offering. PolyTherics issued new shares to the value of £13.5 million to investors and Antitope shareholders in connection with the merger.
The company has enabled the development of novel forms of interferon 03b2 (for the treatment of multiple sclerosis) and blood factors VIIA, VIII and IX (for the treatment of haemophilia A and B) utilising original Imperial TheraPEG™ technology. This is achieved through licences granted by PolyTherics to Nuron Biotech and Celtic Pharma Holdings who are in early pre-clinical development. PolyTherics has further developed the conjugation technology (ThioBridge™) for its application in the creation of stable, homogeneous antibody-drug conjugates for the targeted cancer therapy.
Polytherics has impacted the UK economy generating intellectual capital, capital investment, new employment and novel compounds to treat disease.