Carbon dioxide sequestration
Submitting Institution
University of CambridgeUnit of Assessment
Mathematical SciencesSummary Impact Type
TechnologicalResearch Subject Area(s)
Biological Sciences: Ecology
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering
Summary of the impact
Carbon dioxide sequestration is the process by which pressured CO2
is injected into a storage space within the Earth rather than released
into the atmosphere. It is one of the major ways that carbon dioxide
emissions can be controlled.
Research since 2004 by applied mathematicians at the University of
Cambridge into the many different effects that might be encountered during
this process has had considerable impact on government and industry groups
in determining how the field is viewed and how it should and might be
industrially developed. The work played a major role in the CO2CRC
conferences and was subsequently reported to the Australian Government by
the CO2CRC chair and organisers.
Underpinning research
This research addressed the process and the consequences of carbon
dioxide sequestration in porous rock and also possible leakage from the
storage space. The research was carried out by members of the Department
of Applied Mathematics and Theoretical Physics (DAMTP): Professor Huppert
(Professor from 1989-2011), Professor John Lister (Royal Society URF from
1992, University Lecturer from 1997, Reader from 2001, Professor from 2006
to present), Dr Jerome Neufeld (Research Associate from 2007-2009, now a
Lecturer at the Department of Earth Sciences). There were collaborations
with Professor Michael Bickle of the Department of Earth Sciences and Dr
Andrew Chadwick, member of the British Geological Survey.
The research carried out in DAMTP began in 2004 and consisted of the
development of mathematical models for the spread and leakage of carbon
dioxide injected into a porous medium. Informed by novel laboratory
experiments in the G.K. Batchelor Laboratory in DAMTP models were
developed for rate of spread as a gravity current of a carbon dioxide
plume directed towards a horizontal cap rock. It was found that, treated
as a one-phase fluid, the axisymmetric current, fed at a constant flux,
increases its area at a rate directly proportional to time This same
result was found, somewhat surprisingly, if the intruding carbon dioxide
is considered as a two-phase fluid that incorporates effects due to
surface tension.
This increase in area with time was clearly seen in the seismic data
obtained in 1999, 2001, 2002, 2004, 2006 and 2008 from the longest-living,
large-scale field operation of carbon dioxide sequestration, at Sleipner
in the North Sea. The data analysis also allowed the determination of the
time at which the input carbon dioxide first encountered the upper
horizons of the field, in some instances up to three years after initial
injection. The Group also compared the data collected at the Otway Project
in Australia in 2008/9 with its own model which allows for flow up a
slope, as is the case for the Australia situation.
Research was also conducted into the leakage that might occur if there
was either a point or line fracture through which the carbon dioxide could
escape. Further, a series of models was developed to analyse the
mechanisms by which carbon dioxide can dissolve in the surrounding brine
and produce vigorous convection due to the fact that the mixture is
heavier than either of the initial fluids. By this mechanism the carbon
dioxide is gradually stored permanently at the base of the confining
aquifer. Since the Sleipner project commenced in 1996, 1 million tonnes of
carbon dioxide have been input annually with 100,000 tonnes permanently
stored by this mechanism each year. Using linear extrapolation, then, to
gain approximate timescales, these models show that if the supply was
curtailed now (after 16 years of input), it would take 160 years for the
carbon dioxide to be at such a relatively heavy state that it would lie at
the bottom of the aquifer and so be stored safely and permanently.
References to the research
1. *Lyle, S., Huppert, H.E., Hallworth, M.A., Bickle, M. and Chadwick, A.
(2005) "Axysymmetric gravity currents in a porous medium", J. Fluid Mech.
543, 293-302. DOI: 10.1017/S0022112005006713.
2. *Vella, D. and Huppert, H.E. (2006) "Gravity currents in a porous
medium at an inclined plane", J. Fluid Mech. 555, 353-362. DOI: 10.1017/S0022112006009578
3. Neufeld, J.A., Vella, D. and Huppert, H.E. (2009) "The effect of a
fissure on storage in a porous medium", J. Fluid Mech. 639,
239-259. DOI: 10.1017/S0022112009991030.
4. Golding, M.J. and Huppert, H.E. (2010) "The effect of confining
impermeable boundaries on gravity currents in a porous medium", J. Fluid
Mech. 649, 1-17. DOI: 10.1017/S0022112009993223.
5. Vella, D., Neufeld, J.A., Huppert, H.E. and Lister, J.R. (2011)
"Leakage from gravity currents in a porous medium. Part II. A line sink",
J. Fluid Mech. 666, 414-427. DOI: 10.1017/S002211201000491X
6. *Boait, F.C., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A.
and Huppert, H.E. (2012) "Spatial and temporal evolution of injected CO2
at the Sleipner Field, North Sea", J. Geophys. Res. 117, B03309.
DOI: 10.1029/2011JB008603.
*References which best represent the 2*+ quality of the underpinning
research
Details of the impact
This research has been the basis of calculations made to assess the
viability of CCS as a technology to ameliorate the effects of carbon
emissions and their impacts on climate change. The mathematical models and
their successful comparisons with field data have provided policy makers
with the information needed to estimate the quantities of CO2 that can be
stored and to evaluate the risks associated with leakages from underground
reservoirs.
This research has impacted European policy makers through the European
Academies Science Advisory Council (EASAC). As a result of his research,
Huppert was invited in 2011 by the president of EASAC to be the Chair of
the Working Group on Carbon Capture and Storage (CCS). The President of
EASAC [11] writes "Professor Huppert was nominated by the Royal Society to
chair the working group that carried out the study on the basis of his
research on the fluid dynamics of carbon dioxide stored in geological
formations, and his extensive efforts to lecture to a wide range of
audiences on this important and topical issue". The CCS Working Group has
published the report, Carbon storage and capture in Europe, (2013,
pp95) [8] for the European Parliament. The report, which makes
explicit reference to the research outlined in section 3, was distributed
to all politicians, scientists and policy makers on energy in Europe in
May 2013 and will inform political debate and international strategies on
climate change. The report was released at a press conference on 21 May
2013 and at the Royal Society in London on 12 June 2013 [13]. This report
is highlighted on its website by the CCS Association which has industrial
members representing a wide sector of UK industry [10].
Huppert's research has also had a significant impact on the policy of the
Australian Government on CCS. According to the Chief Executive of CO2CRC
[9],
"This work in turn provides confidence to Government and the community at
large that underground storage of CO2 is understood, that it can be
monitored and that it works. The impact of this on public policy in
Australia is that CCS has become recognised as an important mitigation
option for Australia and the Government has provided significant funding
(in excess of $1 billion) to support CCS. Obviously this has been the
consequence of the work of many people in CO2cRC and other organisations,
but the work by Herbert and his collaborators has certainly contributed.
It is also appropriate to mention the various public presentations that
Herbert has given in Australia which have been picked up by the media and
which have provided a factual and positive account of what the relevance
of CCS is to the whole issue of climate change and mitigation".
On the basis of the research outlined above, Huppert was asked to present
this work to the All- Party Parliamentary Group for Earth and
Environmental Sciences, to an audience of around 100 people, including
both MPs and Peers, on 16 October 2012.
Huppert was awarded the Bakerian Lectureship of the Royal Society for
2011 [7]. This is the major lecture in the physical sciences delivered
each year at the Royal Society. The title was `Carbon storage: caught
between a rock and climate change' and was based on the whole gamut of
Huppert's research, explaining the concepts of carbon dioxide
sequestration and the possible consequences to an audience of over 250.
The Royal Society [12] states that "The total viewing figure for "Carbon
storage: caught between a rock and climate change" from it being given on
24 March 2011 to today (1 May 2013), is 1618, according to our Google
Analytics record. The webcast has been accessed from 59 countries, with
the ten most popular being the United Kingdom, United States, Australia,
Canada, Germany, France, Switzerland, Netherlands, Spain and China". This
accessible presentation of this research encouraged the audience to engage
with current scientific and political debates on solution to climate
change.
Sources to corroborate the impact
- Royal Society, 2011. 2011 Bakerian Lecture: Professor Herbert
Huppert FRS [online] Available at http://royalsociety.org/events/2011/carbon-storage/
[Accessed 17 May 2013].
- EASAC CCS report, 23 May 2013 Carbon capture and storage in Europe
[online] Available at http://www.easac.eu/home/reports-and-statements/detail-view/article/easac-report.html
[Accessed 14 June 2013].
- Statement from Chief Executive of CO2CRC, CBE, CEO, CO2CRC, Canberra,
Australia, corroborating of the impact of the group's work in CO2CRC
conferences
- Scientific Adviser to the European Parliament who attended the launch
of the EASAC CCS report and is carrying the matter forward to the European
President and MEPs.
- Statement from the President of EASAC corroborating Huppert's
invitation and contribution to EASAC
- Statement from Manager, Science Communication, Royal Society
corroborating viewing figures for "Carbon storage: caught between a rock
and climate change"
- Royal Society press release on Carbon storage and capture in Europe
report:
http://blogs.royalsociety.org/in-verba/2013/06/24/capturing-an-opportunity-or-storing-up-trouble-ccs-in-the-uk-and-europe/