Log in
The Scottish Government is aiming to generate all of its electricity through renewable energy sources by 2020. Research by the University of Aberdeen has produced a freely available tool - the Windfarm Carbon Calculator - that has overhauled the planning process for windfarm developments in Scotland. In changing public policy and planning regulations, and informing the public debate, Aberdeen's calculator is helping the Government fulfil its pledge to become "the green energy powerhouse of Europe" while protecting some of the country's most environmentally fragile areas. It continues to guide the actions of politicians, planners, the wind industry, NGOs and community groups.
The claimed impact therefore is on: the environment, economy and commerce, public policies and services, practitioners and services.
International and national political negotiations and public debates about climate change mitigation policies can only progress with accurate and timely updates about the global carbon budget. Annual carbon updates have been supplied over many years, as a result of our work. The "Global Carbon Project" (GCP) has become the definitive source on carbon budgets for political and policy processes dealing with climate change mitigation and the GCP draws heavily on the School's work on the ocean carbon cycle, including ocean iron fertilisation, and its relevance to the contemporary global carbon budget. This is evidenced by its citation and influence on national (e.g. UK, Germany, Australia, USA, Sweden and Canada) and international (e.g. UN Framework Convention on Climate Change) deliberations.
Research in the UoA developed a methodology for Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC), providing `cradle to grave' carbon footprint estimates for commercial products. The methodology was embedded in a set of software tools designed to be used by non- experts, allowing companies to perform carbon footprinting in-house. The software is free to download, currently with 3300 users in more than 70 countries. The methodology and software tools have been endorsed by BERR (now BIS), DEFRA and the World Bank, and used widely by industry, across a range of sectors, to reduce carbon footprints of their products. This has resulted in significant environmental and socio-economic benefits, including estimated climate change mitigation gains in excess of £450m.
Research conducted at the Business School's Centre for Business and Climate Change since 2008 has:
This impact has been of international significance, reaching international standard setters, investors, corporations and other stakeholders. For example, 26 multinational companies paid to participate in carbon benchmarks conducted by a spin-out company created by the Centre and based on methods it developed. 90 global investors with US$7tr of assets have launched a shareholder action initiative inspired by the Centre's research. The world's leading carbon accounting standards body has adopted a conceptual framework developed by the Centre.
Impacts: I) Development of carbon credit certification schemes, including the expansion by the Gold Standard Foundation into land-use and forestry and the creation of the Natural Forest Standard by Ecometrica Ltd (both in 2012). II) Enhanced cross-sector collaboration for the quantification of forest-loss risks and implications for financing risks, through the 2011 creation of a Forest Finance Risk Network (FFRN).
Significance and reach: The Gold Standard Foundation represents nine forestry projects worldwide (benefiting >8,500 people) and over 1.8million ha. of Brazilian land is managed through two Natural Forest Standard projects. The FFRN connects 80 member organizations globally.
Underpinned by: Research into carbon emissions associated with forest-loss, undertaken at the University of Edinburgh (2005 onwards).
Our research on the economics of low carbon cities has impacted on energy and low carbon strategies and on investment decision-making in major UK cities including Leeds, Sheffield and Birmingham. It has also influenced guidance issued to local authorities by the Committee on Climate Change and the Department for Communities and Local Government, and has helped to embed strategies and targets for green growth in the next five-year plan for China. The research was voted one of the most transformative ideas to be presented at the UN climate negotiations in Durban in December 2011, and the approach is now being replicated in cities in India, Peru, Malaysia and Indonesia.
Results from climate physics research at the University of Oxford have demonstrated that targets for cumulative carbon emissions, rather than greenhouse gas concentrations, are a more effective approach to limiting future climate change. This new approach and the resulting `trillionth tonne' concept have had substantial political and economic implications. Impacts since 2009 include (a) stimulus to policy developments; (b) influence on the business decisions of Shell e.g. to invest in a $1.35bn carbon capture and storage facility; and (c) significant public and media debate with a global reach.
Impact: Public and private sector investment in technologies for Carbon Capture and Storage (CCS), including a major UK Government CCS Commercialisation Programme.
Significance and reach: In the 2010 Spending Review the UK government re-affirmed a £1billion commitment to CCS funding, which since 2012 has been referred to as a CCS Commercialisation Programme. [text removed for publication]. The European Commission have placed CCS pipelines into 2012 infrastructure package negotiations, with allocated funds of ~ €2.5billion.
Underpinned by: Research into the sub-surface storage of carbon, undertaken at the University of Edinburgh (1999 onwards).
In the REF impact period, our research on carbon-rich tropical peat swamp forests in Indonesia has been used to:
The Plymouth University marine carbon team was the first to investigate ecological consequences of ocean acidification, and carbon capture and storage leakage. The findings have impacted on US legislation and are key to the UK ocean acidification research programme. The research is highlighted in the European Science Foundations' Science Policy Briefing on Impacts of Ocean Acidification (2009), the United Nations' Emerging Issues Bulletin on `Environmental consequence of ocean acidification: a threat to food security' (2010), the US `National Strategy to Meet the Challenges of a Changing Ocean' (2010) and the Intergovernmental Panel on Climate Change `Ocean Acidification Report' (2011).