Similar case studies

REF impact found 16 Case Studies

Currently displayed text from case study:

Improved Hip Replacement Fixation Techniques to Increase Implant Longevity

Summary of the impact

Our research has developed improved hip replacement fixation techniques, which have improved the biomechanical stability of implanted artificial joints. These techniques have been employed by orthopaedic surgeons, for example at Mid-Essex Hospitals Services Trust (MEHT), in primary and revision total hip replacement operations. As a result, the number of patients requiring revision hip surgery due to cup loosening has fallen by 50%. Additionally, these techniques have reduced the recovery time per operation by 3-5 days, which in addition to benefitting the patient have also resulted in an average saving per operation of £1,200.

Submitting Institution

Anglia Ruskin University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Enhancing clinical materials and techniques in orthopaedic surgery through improvements in bone cement systems

Summary of the impact

Bone cement is widely used in joint replacement surgery, both for implant fixation and to enhance screw fixation in osteoporotic bone. Specific impacts include the development of two new orthopaedic cement systems by Summit Medical (Gloucester), also enabling that firm to obtain product approval and achieve significant new penetration of UK and international markets (UK bowl 70%; UK syringe 35%; US overall 15% — translating to total global sales 2009-2012 of £36M: 2012 = £9M).

Research outcomes have also impacted as a key element in the bid by Stryker Orthopaedics to obtain EU clinical approval and undertake US submission (ongoing) of injectable cements for augmenting bone screw fixation. Approval enabled the firm to establish Hydroset as a mainstream product with a cumulative total income of $180M since 2008 (income 2012 = $32M). The reach of these impacts also extends to improved clinical outcomes, resulting in improved quality of life and reduced healthcare costs.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Precision Techniques for Hip Joint Replacement Surgery Improves Quality of Life for over 10,000 Patients

Summary of the impact

Over 100,000 hip joint replacements are performed each year in the UK. The correct restoration of joint centre is critical to the successful outcome of total hip replacements. Failure to do so results in dislocation, increased wear and leg length discrepancy.

In collaboration with QUB, over 4,000 patient-specific custom hip prostheses were manufactured and implanted at Musgrave Park Hospital, Belfast, leading to accurate restoration of anatomical joint centre.

As a consequence a new surgical instrument has been developed and utilised in more than 4,000 surgeries. Surgical costs are reduced compared to the alternative of computer-aided surgery. The DePuy Synthes Companies are funding the development of a later version of this surgical instrument

Submitting Institution

Queen's University Belfast

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Lower wearing, longer lasting joint replacements in the hip and knee

Summary of the impact

This UoA has developed the largest independent simulation laboratory in the world for pre-clinical evaluation of the wear of artificial joints, which has been used to develop and commercialise novel pre-clinical simulation systems for joint replacements, in partnership with Simulation Solutions Ltd. Simulation Solutions Ltd is now the market leader of joint simulation systems outside North America.

We have also co-developed lower wearing ceramic-on-ceramic and ceramic-on-metal bearings for hip joints, and have worked with DePuy Orthopaedics Inc to define lower wearing tribological solutions for polyethylene knees. This work has benefited hundreds of thousands of patients worldwide during the REF period.

Submitting Institution

University of Leeds

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering, Materials Engineering
Medical and Health Sciences: Clinical Sciences

Joint Venture: Working in partnership to develop a unique hip replacement treatment

Summary of the impact

The University of Southampton's world-leading record in bioengineering continues to deliver significant benefits, resulting from recent research crucial to the development, pre-clinical verification and CE-marking of a revolutionary hip-resurfacing implant. In the wake of growing concerns over some previous implant designs, this work has positively impacted on a wide range of audiences: over 9800 patients have received the new implants with excellent early clinical results at two years' follow-up. Within 4 years UK PLC benefited with considerable additional turnover [exact figure removed for publication], a majority from abroad, and the technology attracted three years of investment for a start-up company at Southampton Science Park. This award-winning knowledge transferring research has been widely acknowledged as an example of best practice, and has increased appreciation of science and technology further through outreach.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Improved Creep-Fatigue-Oxidation Resistance in Gas Turbine Disc Materials

Summary of the impact

Research at Portsmouth has significantly improved the understanding of damage tolerance under creep-fatigue-oxidation conditions experienced in aero-engine components. The understanding has been developed through research on a new-generation disc materials including U720Li and RR1000, which have since been used in Rolls-Royce engines including Trent 900 in Airbus A380, Trent 1000 in Boeing 787 and the latest Trent for Airbus A350 XWB. These new materials have enabled aircraft to operate more efficiently at higher temperatures, with a major impact on CO2 emission and a significant impact on economy due to the new market opportunities and the reduction of operating costs.

Submitting Institution

University of Portsmouth

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

2) International Standards for Portland-Limestone Cements

Summary of the impact

This case study describes the impact on practitioners and services through the development of new international standards based on research at the University of Aberdeen on Portland-limestone cements undertaken in 2004-8. The findings of this research have been adopted into revised international specifications for Portland cement mixtures in the European Union, Canada and the United States. The findings have also been incorporated into an industry standard software package (CEMDATA) for modelling thermodynamic properties of cement mixture, now established as part of the GEMS software suite freely available.

Submitting Institution

University of Aberdeen

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Design of a new total knee replacement

Summary of the impact

Each year an estimated 1,324,000 artificial knee joints (total knee replacements — TKR) are implanted worldwide; an estimated third of these utilise an implant manufactured by DePuy International. Underlying computer-based research performed by the Bioengineering Sciences Research Group has played a central role during the development of a new design of TKR for DePuy. The design programme, the biggest in DePuy's history, had a budget in excess of US$10 million and aimed to replace the existing TKR system, which had annual sales of approximately US$100 million.

Between 2007-2010, DePuy adopted the computational techniques developed by the group as screening tools to (i) assess polyethylene wear and (ii) account for the effects of surgical variability during the early design phases. DePuy states "This research allowed us to choose the most robust solution when proceeding to mechanical testing and saved years in the design cycle. Patients also benefit from increased confidence in an implant that is able to withstand the rigors of use".

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Supporting national and international policy development on the use of metal-on-metal hip implants

Summary of the impact

The high failure rate of metal-on-metal hip implants led to worldwide concern. Collaborative research between Newcastle University and University Hospital of North Tees identified design features that are considered to have contributed to the failure. The research helped to inform policy makers both nationally, such as the Medicines and Healthcare products Regulatory Agency (MHRA), and internationally, such as the US Food and Drug Administration (FDA). The final outcome was a worldwide withdrawal of one design of implant (the DePuy ASR) and a ban in several countries of a set of implants sharing common features (large head metal-on-metal total hip replacements). The research has reduced the risk of harm to patients who will now receive products with a significantly lower failure rate, and will have financial implications for implant manufacturers and healthcare providers.

Submitting Institution

Newcastle University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Health

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Substantial changes in worldwide healthcare policy and the practice of joint replacement result from research into the failure rates of and systemic effects of metal-on-metal hip replacements

Summary of the impact

Research into the field of metal-on-metal (MoM) arthroplasty (joint replacement) conducted at the University of Bristol in conjunction with the National Joint Registry of England and Wales (NJR) has led to a fundamental change in the practice of arthroplasty around the world and in the clinical follow up of patients. High failure rates have been identified nationally in England and Wales for MoM total hip arthroplasty and certain designs of resurfacing arthroplasty in work conducted by our department. Deleterious systemic effects of wear debris produced by these implants have also been identified by our research. The use of these devices has declined from 14% of procedures in 2008 to less than 1% in 2012. Citing our research, national bodies including NICE (2014), the MHRA (2011 & 2012), the UK Department of Health (2012), British Orthopaedic Association (2011 & 2012), NJR (2012), British Hip Society (2011 & 2012) and the US Food and Drug Administration (FDA) (2013) have issued guidance suggesting the restricted use of such devices or close surveillance of patients in whom these devices have been implanted.

Submitting Institution

University of Bristol

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Filter Impact Case Studies

Download Impact Case Studies