Log in
Our research has had a global impact on understanding the tectonic development and fill of rift basins, providing a predictable spatial and temporal template for the distribution of hydrocarbon reservoir rocks. The models are embedded in exploration workflows of global oil companies and have influenced recent exploration success (North and East Africa, Atlantic conjugate margins). Translational research on 3-D rift basin outcrop data capture and resulting software licencing has improved reservoir modelling, optimising positioning of $100m wells. Field-based training for several hundred oil industry staff since 2005 has ensured in-depth knowledge transfer.
Research into the quantification and reduction of geological uncertainty has directly resulted in changes to UK government policy relating to the subsurface as a geological resource. Through Prof Shipton's membership of the Royal Society/Royal Academy of Engineering (Joint Academies) expert working group on risks associated with shale gas extraction in the UK, her research has informed the Department of Energy and Climate Change on ways to calculate and mitigate the risk of seismicity and associated undesirable fluid flow. The Joint Academies report resulted in the lifting of the UK Government embargo on fracking in Dec 2012, allowing exploration for shale gas in the UK to resume, with associated economic and societal benefits of an enhanced UK gas resource. Prof Lunn's membership of the UK Government Committee for Radioactive Waste Management (CoRWM) (2008-present) has resulted in her research informing the substantial changes made to the siting policy for UK radioactive waste disposal from February 2013.
Economic gains by oil and gas companies, improvements in professional practice in hydrocarbon exploration, and environmental benefits from identifying CO2 disposal sites have been achieved through a Cardiff-led consortium with industry. Building on research carried out since 2004, ten of the largest oil companies in the World have contributed to and benefited from understanding how faulted caprocks behave under specific geological conditions. Research at Cardiff has shown which families of faults and fractures make caprocks highly permeable, thus improving Industry's ability to predict if caprocks are able to prevent oil and gas reaching the surface.
This case study describes the economic impact to sections of the hydrocarbons industry resulting from research into deep water sediment transport and depositional processes. turbidites.org is a multi-institutional, interdisciplinary research platform based at University of Aberdeen, which takes a multi-scale approach to understanding deep-water depositional systems and their significance as a stratigraphic record of long-term environmental change. The resulting research outputs have been applied to deep-water hydrocarbon reservoir prediction.
Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.
Resistivity anomalies resulting from hydrocarbon reservoirs can be located and measured using controlled source electromagnetic (CSEM) techniques. The University of Southampton played a pivotal role in the first full-scale marine CSEM survey over a hydrocarbon target in late 2000. This survey and subsequent work spawned one of the greatest technological advances in the field of oil exploration since the development of 3D seismic techniques. By the end of 2012 over 650 commercial CSEM surveys had been completed worldwide, with annual survey revenues in excess of US$200 million. The University continues to develop impact through consultancy and industry-funded research projects.
Failure to predict and control geological overpressures during drilling can lead to operational delays costing millions of pounds, or to blow-outs causing serious environmental damage and costs running into billions. Using methodologies, knowledge and data analysis techniques developed at Durham, a spin-out, GeoPressure Technology (GPT; now Ikon Geopressure) (20 employees, revenues 2008-13: £10.8 million) has become a niche supplier to the global oil industry of expertise, training and software ("PressureView") that predicts and assess the causes of overpressure. GPT consultancy has had particular impacts for companies drilling in the North Sea, offshore Canada, Norway and West Africa where overpressure represents a significant technical challenge.
Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.
Impact: Economic benefits have been derived from the MTEM Limited spin-out company, which has been owned since 2007 by Petroleum Geo-Services (PGS). These include a commercial marine application of the MTEM (Multi-Transient ElectroMagnetic) method offshore Tunisia in 2008, successfully discovering hydrocarbons before drilling and the 2012 launch by PGS of a fully-towed commercially-viable marine MTEM system.
Significance and reach: Approximately 180 man-years of employment, with a value of more than $15M, have been provided in Edinburgh over the period January 2008 — December 2012.
Underpinned by: Research into electromagnetic survey methods, undertaken at the University of Edinburgh (1999 onwards), which led directly to the creation of MTEM Limited.
Impact: Economic benefits arising from new exploitations of North Sea oil and gas fields (2008 - June 2013), including oil production at the Bentley field by Xcite Energy Ltd and gas production at the Wissey field by Tullow Oil plc.
Significance and reach: The Bentley field produced 47,000 barrels of oil (value ~$4.7M) over the period 2011 — 2012, with an estimated ~900M barrels in place. [text removed for publication].
Underpinned by: Research into the identification of geological features through seismic and sequence stratigraphy, undertaken at the University of Edinburgh (1993 - June 2013).