Log in
A team of Portsmouth researchers has developed a transparent polymer coating that prevents colonising bacteria from adhering to the surfaces of teeth. In addition to protecting from decay, the polymer coating has the added benefits of reducing dental erosion, alleviating root hypersensitivity, and inhibiting the staining of teeth. GlaxoSmithKline (GSK) has adopted this technology and the polymer has been successfully developed into a component of "next-generation" oral healthcare products.
Fingerprints remain the most conclusive means of linking an offender to a crime scene. Conventional visualization techniques require the sweat deposit to be largely retained and thus have low success rates. We have developed technologies to visualize fingerprints on metals after the sweat deposit has been substantively lost, deliberately removed or environmentally degraded. One technology uses microscale corrosion caused by the sweat deposit; it has been used in solving gun crimes. A second technology uses trace residual sweat deposit as a template to direct electrochromic polymer deposition to bare metal between the ridge deposits. These have been adopted in the new Home Office Fingerprinting Manual and licensed to UK forensic providers.
Novel vapour sorption experimental methods for the characterisation of complex particulate materials have been developed in the Department of Chemical Engineering. This research and expertise resulted in the creation of Surface Measurement Systems Limited (SMS), whose Dynamic Vapour Sorption (DVS) and Inverse Gas Chromatography (IGC) instruments are now found in >500 laboratories around the world. They are recognised standard research and development tools in the global pharmaceutical industry (DIN 66138). SMS has contributed >270 man-years of employment and generated £27M of turnover, whilst SMS instruments have generated over £300M of economic value, over the REF period.
The cost of goods is an especially important issue in developing commercially available agrochemicals, which must be manufactured on a large scale. Richard Compton's research at the University of Oxford has led to a step change in the understanding of heterogeneous reaction mechanisms for liquid — organic solid or liquid — inorganic solid processes involved in large-scale manufacturing processes. Compton's work has had particular impact on optimising the processes used by Syngenta AG in its manufacturing of agrochemicals. Since 2008 the insights gained on inorganic-base dissolution have been of great benefit to Syngenta in its development of scalable robust manufacturing processes, particularly in relation to production of its fungicide Amistar and insecticide Actara, which are two of the world's largest selling products of this type. In 2012 Syngenta achieved total sales of over $ 14 billion, $ 4.8 billion of this from fungicide and insecticide revenues.
Ehiasarian and Hovsepian of the Materials and Engineering Research Institute (MERI) have achieved significant economic impact through industrial uptake of their innovations in High Power Impulse Magnetron Sputtering (HIPIMS). Exploiting these innovations, HIPIMS treatments have been used by manufacturers to enhance the surface properties of millions of pounds worth of products. Applications include industrial blades, components within jet turbines, replacement hip joints, metallised semiconductor wafers and satellite cryo-coolers. Patents based on Ehiasarian and Hovsepian's research have achieved commercial success. In the REF impact period, HIPIMS machines equipped to deliver MERI''s HIPIMS surface pre-treatment have achieved sales of over £5m, and income generated through SHU's HIPIMS-related licences has totalled £403,270. In 2010 Ehiasarian's group established the Joint Sheffield Hallam University-Fraunhofer IST HIPIMS Research Centre, the first such Centre in the UK. This has broadened the industrial uptake of MERI's HIPIMS technologies and stimulated a network of sub-system providers.
This case study describes the impact of interdisciplinary research at MMU that has focused on the development and characterisation of hygienic and antimicrobial surfaces across a range of applications, particularly with regard to food hygiene, which in turn impacts on food quality, reduced waste and consumer health across the international food industry. This 20-year collaboration has enabled identification and specification of properties of putative hygienic/antimicrobial surfaces, whilst testing them in vitro and in situ. This research has had international impacts in areas including health (cross-contamination) hygienic design (food processing), and development of standards for testing novel materials.
The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
University of Huddersfield research into surface metrology, carried out as part of the EU-funded SURFSTAND project, has led to worldwide changes in manufacturing. Nine ISO standards related to measuring the surface roughness of parts have been developed as a result, influencing practices in sectors ranging from aerospace and automotive engineering to microelectronics and bio-implant production. Consequently, all quantitative 3D surface measurement carried out in the world now draws on the research. Instrument manufacturers and the National Physical Laboratory have also implemented the standards, while software developed as part of the research has been incorporated by a leading industrial partner, significantly enhancing the company's offering and market position.