Similar case studies

REF impact found 14 Case Studies

Currently displayed text from case study:

Thin Films and Advanced Polymer Substrates for Plastic Electronics

Summary of the impact

The Thin Film Centre (TFC) group at UWS pioneered thin film materials and processes for plastic electronics with Dupont Teijin Films (DTF) Ltd and Plastic Logic (PL) Ltd over a period of nine years. This work was pivotal to the growth of PL from a start-up position resulting in the first all-polymer e-book reader and was the basis of a world leading position in the supply of specialised substrates for DTF Ltd.

Submitting Institution

University of the West of Scotland

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

3. Commercialisation of Instrumentation for Testing and Development of Lubricants

Summary of the impact

Research in the Mechanical Engineering Department has led to a series of experimental techniques for measuring the fundamental properties of lubricants in a scientific manner. These include measurement of the thickness, structure and properties of fluid and solid lubricating films, as well as the friction, fatigue and wear behaviour of lubricated surfaces.

Measuring instruments based upon these techniques have been commercialised by a spin-out company, PCS Instruments, which has now become the largest supplier of Tribology test equipment in the world. Over the period 2008-13 it had a turnover of £39.8M (£7.63M in 2012-13). The research has changed the way in which lubricants and lubricant additives are developed, with PCS test rigs in use in all the major lubricant and additive companies, as well as many University tribology research and National Standards laboratories. The techniques have enabled the development by industry of a new generation of high-efficiency lubricants for automotive applications.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering, Interdisciplinary Engineering

Improving the performance of water meters

Summary of the impact

Research has led to improvements in the performance over 16 million water meters manufactured by Elster Metering Ltd. since 2008, extending their working lifetimes and reducing maintenance costs. In particular, research on polymeric replacements for the glass in water meters helped Elster establish their product development strategy, and led to changes in the manufactured meter. Brunel University research identifying a specific set of acetal polymers that reduce the degradation of the bodies in water meters has been incorporated in 1.8 million water meters. These meters have less embodied carbon dioxide, and are less prone to theft than the meter with brass components they replace. This innovation allowed Elster to reduce the costs of manufacturing in the UK, thereby maintaining a strong competitive position within the market for water meters.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Chemical Engineering, Materials Engineering

Advanced plasma source for electron-beam deposition of high performance optical filters.

Summary of the impact

An advanced plasma source based on novel engineering has been developed and proven in conjunction with Thin Film Solutions Ltd (TFSL). This source is retrofittable to existing electron- beam deposition systems and significantly improves the properties of thin films and advanced optical filters. TFSL has produced commercial products based on this source and has achieved sales to date of £2.3 million (letter from CEO of TFSL provided) as the new technology has been widely adopted in the optical filter industry.

Submitting Institution

University of the West of Scotland

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Other Chemical Sciences
Engineering: Materials Engineering

Luminescent inks for mail coding and sorting

Summary of the impact

Fundamental research in collaboration with Royal Mail into luminescence molecules constrained within a water-soluble acrylic polymer matrix has led to the development of novel, water-soluble, ink-jet printable, luminescent inks. These inks are employed by Royal Mail for printing coding patterns on envelopes that can be read by automatic letter-sorting machines. The inks offer excellent performance in humid environments, on coloured paper, and on paper containing optical brighteners, and are safer. Royal Mail delivers, on average, 58 million letters each day, representing annual revenue of £5.2 billion. The research at Lancaster enabling the innovation has a direct impact on the commercial performance of Royal Mail, the safety of its employees and the public, and everyone (commercially and/or privately) using Royal Mail services to send and receive mail correctly, quickly, and at a low cost.

Submitting Institution

Lancaster University

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Infrared Optical Filters for Atmospheric Remote-Sensing and Astronomy

Summary of the impact

Thin-film optical filter research at the University of Reading is a unique and enabling technology that permits astronomers and meteorologists to gather data leading to increased understanding of atmospheric and astrophysical phenomena. Infrared filters are the key optical components in many satellite telescopes for Earth observation, planetary research probes and infrared astronomy. They form the eyes of the instrument to separate light into wavebands in order to measure temperature, gas composition, water vapour, dust clouds and aerosols. This data is used to generate accurate atmospheric and environmental circulation models for global climate studies, and measure properties of the universe for stellar and planetary formation theories.

Submitting Institution

University of Reading

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Engineering: Materials Engineering

Seagate Technology R&D Investment Strategy

Summary of the impact

University research and expertise in materials and photonics relevant to data storage has influenced strategic investment decision-making within Seagate Technology resulting in the creation of 85 new R&D positions in the UK announced in 2010. These new jobs were part of an £60M investment that saw a re-allocation of corporate budget from the USA and resulted in significant expansion of Seagate Technology's UK based R&D capacity. The investment was made to support their medium-term technology roadmap plans. Seagate Technology is the world-leading manufacturer and supplier of data storage technology in the form of disk drives, employing 53,000 people worldwide.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Nanotechnology

Commercialisation of Ferroelectric Liquid Crystal over Silicon Microdisplays

Summary of the impact

Impact: Economic gains

PHYESTA research has led to the setting up of a company now known as ForthDD. Since 2008 it has increased its annual revenue by more than 25% to around US $5M, and its global workforce from 25 to 35. It has released new products directly underpinned by PHYESTA research as recently as October 2012.

Significance:

A consortium involving PHYESTA staff in collaboration with Edinburgh's School of Engineering and five industrial partners realised the world's first high-resolution ferroelectric liquid crystal over silicon (FLCOS) microdisplay. This digital display attracted investment from the UK, Taiwan, and USA of over $40m, and was taken forward to production by MicroPix, MicroVue, and Forth Dimension Displays.

Reach:

ForthDD now has offices in Valencia, USA, and Berlin, Germany. The company designs, develops and manufactures single chip microdisplays used in the demanding near to eye (NTE) training and simulation systems, HD video camera viewfinders, medical imaging systems and virtual reality and head-mounted displays.

Beneficiaries:

ForthDD, its customers and business partners (e.g. in the medical imaging sector).

Attribution: This work was led within PHYESTA by Professor David Vass involving PHYESTA and done in collaboration with Edinburgh's School of Engineering.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Communications Technologies

New crime detection technologies for law enforcement agencies

Summary of the impact

Fingerprints remain the most conclusive means of linking an offender to a crime scene. Conventional visualization techniques require the sweat deposit to be largely retained and thus have low success rates. We have developed technologies to visualize fingerprints on metals after the sweat deposit has been substantively lost, deliberately removed or environmentally degraded. One technology uses microscale corrosion caused by the sweat deposit; it has been used in solving gun crimes. A second technology uses trace residual sweat deposit as a template to direct electrochromic polymer deposition to bare metal between the ridge deposits. These have been adopted in the new Home Office Fingerprinting Manual and licensed to UK forensic providers.

Submitting Institution

University of Leicester

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Polymers for Drinks Vending Applications

Summary of the impact

Research at the University of Manchester has supported the development of drinks vending systems for Mars Drinks. The research has demonstrated that a detailed understanding of the relationship between the structure and properties of the polymeric components is vital for the design and performance of two drinks vending systems, Flavia (single-portion fresh beverages) and Klix (in-cup beverages). This research has contributed to major improvements in materials selection, quality control, cost reduction and performance. These drinks vending systems were developed originally in the UK in collaboration with the University of Manchester, with Flavia now also manufactured in the USA and marketed worldwide by Mars Drinks with an estimated sales value of > US$400m per annum.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies