Log in
Research by the University of Southampton into river processes and restoration has contributed significantly to the adoption of fluvial geomorphology as a tool for river management. The research quantified for the first time, the cost of sediment management in rivers to the UK economy and environment, arguing that improvements could be achieved by applying fluvial geomorphology. The research developed new evidence, tools and training that were adopted by river management agencies and consultants for the scoping, assessment and planning of projects. This has resulted in cost-savings through reduced river maintenance, improved river environments, and the creation of a new employment market for graduates with geomorphological training.
Research at Loughborough University (LU) from 2000-2013 by Dr Wood and Professor Wilby has enabled Natural England, the Environment Agency of England and Wales, and the Environmental Protection Agency of Ireland, to implement European Directives (Water Framework, Habitats, and Groundwater). Benefits were accrued from the development of monitoring techniques and integrated modelling to understand long-term drivers of ecological status in river systems. This research has been translated into field standards and planning guidelines within the UK water sector. Moreover, this work helped other organisations such as World Wildlife Fund (WWF-UK) to raise public awareness of the consequences of household water use on freshwater environments.
Quaternary Science research undertaken at Royal Holloway examined the environmental archives provided by ancient rivers, now preserved in part as extensive sand and gravel deposits. In so doing, the research identified the former courses of major Pleistocene river systems in England, in particular the now-extinct Bytham river, the largest in England until its obliteration by the ice sheets of the Anglian glaciation c. 450,000 years ago. The research concerned the geographical extent and quality of these Pleistocene river deposits, as well as their palaeo-environmental context, age and archaeology. The interlinked impacts of the research have been: a) economic, via the identification of resources of economic value to the aggregates industry; and b) cultural, via enhancing heritage preservation in England's sand and gravel quarries.
Firstly, then, the research has a direct economic benefit for the UK aggregates industry, which has used the results on Bytham river deposits to predict the location and viability of aggregates resources. This has resulted in new quarries, and in the extension of existing quarries, with a value of aggregate production circa £50m in the assessment period. These impacts were facilitated in part by the Department's close working relationships with a number of quarrying companies. A wider economic impact on the aggregates industry was also delivered through significant changes to the British Geological Survey maps that form an important basis for quarry development.
A second impact of the research has been the enhancing of heritage preservation. The Department's relationship with the quarrying industry has had a direct effect on the archaeological and geodiversity policy that regulates its economic activity. Royal Holloway took a leading role in the English Heritage supported National Ice Age Network (NIAN) which engaged the aggregate industry, quarry workers and members of the public in the task of recognising, recording and preserving Pleistocene remains in England's sand and gravel quarries. During the assessment period, NIAN, expert advice from Royal Holloway staff and other dissemination of research has shaped ongoing heritage policy in relation to quarrying and Pleistocene and Palaeolithic remains.
The results of commissioned research by Aberystwyth University (AU) have shaped decision-making that led to the relocation of refugee Roma, Ashkali and Egyptian (RAE) communities in Mitrovica, northern Kosovo. In 2009/2010 AU research unequivocally identified the source of elevated lead (Pb) levels in soils that had been blamed for high infant and adult mortality rates in RAE refugee camps, and established that Roma Mahalla had sufficiently low soil Pb levels to permit the construction of a purpose-built housing development for the RAE communities. Following the relocation of the RAE families to Roma Mahalla in 2010/2011 there has been a significant reduction in blood Pb levels in children with no reported deaths attributable to Pb poisoning. This AU research project has had a demonstrable positive impact on life quality and human health of the resettled RAE communities living in Mitrovica.
New approaches to analysing and modelling water systems, developed at Cardiff, have driven national policy changes to improve the proportion of fully functioning water ecosystems in the UK. UK Government, Welsh Government and a range of NGOs have adopted these new approaches, which replace traditional descriptive methods with experimental, analytical and modeling techniques for understanding water ecosystems.
These approaches have been used to develop the water-related component of the National Ecosystem Assessment. This document has directly impacted on UK river management policy, forming the basis of two Defra White papers, `Natural Choice' and `Water for Life', underpinning Welsh Government's Natural Environment Framework and informing the work of a range of NGOs.
The impact of the research at Loughborough University from 1999 to date has transformed informational processes in Leicestershire Police and has been adopted by other Police forces across the UK and internationally. Within Leicestershire it has led directly to [5.1]:
Research by Loughborough University academics has influenced the development of elite footballs used in numerous global tournaments including FIFA World Cups, UEFA European Championships and Olympic Games. Research findings have led to increased design freedoms that have allowed adidas to produce balls with improved commercial appeal resulting in a tenfold increase in sales whilst maintaining product performance in line with the highest certifiable level of FIFA standards.
The primary mission of the Centre for River Ecosystem Science (CRESS: http://www.cress.stir.ac.uk/index.html) is to build and translate scientific evidence into advice to end-users and policy makers in river management, both nationally and internationally. Site-based advice, design and monitoring have been provided to 55 projects, including award-winning river engineering schemes. Independently, our research in community ecology, fluvial geomorphology and agricultural pollutants has supported an outstanding contribution to the UKs response to the key EU Environmental Directives — Water Framework, Flooding, Species & Habitats and Bathing Waters. We have developed the official tools that are now used to determine the status of freshwaters and structure catchment management plans, and trained others in their use, have pioneered risk assessments and modelling of nutrient, pathogen or carbon losses, publicised their effects, scoped mitigation options though engaging with end-users, and steered the pan-European comparison of bio-assessment methods that now underpins common water policy.
Good quality water is essential for life on earth. The `Centre for Intelligent Environmental Systems' (CIES) has developed computer-based solutions for the assessment of river water quality by environmental agencies, working to improve the quality. CIES research has informed discussions and decisions of the UK Technical Advisory Group for the Water Framework Directive (UKTAG WFD). UKTAG WFD have selected the WHPT (Walley, Hawkes, Paisley & Trigg) method, for assessing river water quality throughout the UK, in the context of river management to meet the targets set in the Water Framework Directive (Directive 2000/60/EC from the European Union), which the UK government signed up to in 2000 (Beneficiaries: UKTAG WFD; Environment agencies; The public). Indirect impacts can also be attributed to CIES research, as it enables improvements of river quality, which triggers positive impacts on the natural environment, public health and quality of life (Beneficiaries: The public). CIES software has also been released to environment agency biologists as second opinion tools, thereby resulting in improved delivery of the public service provided by these biologists, when they use the software (Beneficiaries: Environment agencies; Environment agency biologists; The public).
Since 1993, the outcomes of preservation management research at Loughborough University have: