Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

2. Commercialisation of Guided Wave Inspection for the Detection of Corrosion in Pipes

Summary of the impact

Research led by Professors Cawley and Lowe (employed at Imperial College over the whole 1993-2013 period) resulted in guided wave inspection being established as a new non-destructive evaluation (NDE) method. It is used worldwide to screen long lengths of pipework for corrosion, particularly in the petrochemical industry. A spin-out company has been established that employs seven PhD graduates in NDE from Imperial and the technology is also licensed to another company. Turnover on equipment sales 2008-2013 exceeds £50M and the service companies using the equipment generate about £75M pa in revenue worldwide and employ about 300 FTE staff to carry out the inspection. The oil companies benefit from greatly reduced cost of inspection, especially in areas such as insulated, offshore and buried pipes where access is difficult and expensive for conventional inspection methods. Furthermore, the reliability of inspection is significantly improved, leading to major improvements in safety.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Technology: Communications Technologies
Medical and Health Sciences: Neurosciences

National Structural Integrity Research Centre (NSIRC)

Summary of the impact

Brunel and The Welding Institute (TWI) have been pursuing collaborative research on the use of ultrasonic guided waves for the non-destructive testing of oil & gas pipelines, plates, rails, aircraft wires and other engineering materials since 2003. This successful collaboration has led to the creation in 2009 of the Brunel Innovation Centre (BIC), a joint venture between the two institutions based at TWI headquarters in Great Abington, Cambridgeshire, whose mission is to develop a financially sustainable research facility, drawing on Brunel's existing strengths, to complement and underpin the applied research and development activities at TWI. BIC's very successful operation has led TWI to make a significant re-alignment of their strategy and business model, from being a technology provider offering mostly short-term industrial research and consultancy to their members, to providing medium- and long-term research and postgraduate training at the new National Structural Integrity Research Centre (NSIRC), a joint facility being built at TWI headquarters. TWI received a grant of £22 million from the Regional Growth Fund to fund the new building, complemented by a £10 million investment from their own resources and a £15m HEFCE grant for equipment. NSIRC will become a world-class centre of excellence with a unique, industry-driven, integrated approach to research and postgraduate training in the field of structural integrity.

Submitting Institution

Brunel University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Mechanical Engineering, Interdisciplinary Engineering

New active target modulation scheme for marine navigation and port handling

Summary of the impact

A new product has been developed to aid marine navigation and berthing at ports, based on the use of a single-sideband (SSB) active target, offering the dual benefits of substantially enhanced performance, and reduced size and production costs. The research has achieved significant commercial impact via the incorporation of the technique, conceived by Brennan, into all such targets made by Guidance Microwave Ltd, a UK-based engineering company specialising in the development, manufacture and supply of short-range active target location systems. To date, the company has sold approximately 700 active targets (around 25 per month), generating more than £3 million in sales. The idea (subject to patent protection) was initially incorporated in the mini-Radascan product, which is now a valuable tool to the industry and has given Guidance Microwave Ltd. a competitive advantage, becoming their most successful product.

Submitting Institution

University College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Arrays - ultrasonic measurements enable reduced inspection costs in the naval, aerospace and nuclear sectors (for redaction)

Summary of the impact

Non-Destructive Testing (NDT) is essential for the safe and efficient operation of high-value engineering plant in many engineering sectors. Research into ultrasonic arrays at the University of Bristol has had a major impact on NDT. Exploitation of the techniques developed has directly led to combined sales of around [text removed for publication]. For major end-users of NDT such as Ontario Power Generation, BAE Systems and Rolls-Royce, the research is leading to reductions in inspection costs, [text removed for publication]. In addition, highly-skilled engineers have been trained through an Engineering Doctorate programme and are now leading the industrial development of new array inspections based on underlying research performed at Bristol.

Submitting Institution

University of Bristol

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Signal Analysis Solutions for the Medical Device Industry

Summary of the impact

Translational research created new techniques for medical biosignal analysis in both the ECG and Pulse Oximetry areas. CardioDigital, a university spin-out company, was incorporated in 2001 to commercialise the research and became a world leader in the development and supply of signal analysis solutions for the medical device industry. The technology has been applied to defibrillation techniques to improve survival rates following sudden cardiac arrest, with a range of closely linked pulse oximetry based technologies applicable for general ward use. The technologies provide both enhanced and extended performance of the pulse oximeter leading to improved patient care and hospital workflows.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Knowledge Transfer Centre in NDT

Summary of the impact

Following the 2005 inauguration of the joint Non-Destructive Testing Validation Centre with TWI Ltd at Port Talbot, UWTSD: Swansea Metropolitan established a Knowledge Transfer Centre (KTC) in 2008 with European Regional Development Funds (ERDF) and UWTSD funding. The role of the KTC is to support Welsh Manufacturing Industry in the conjunction of NDT with Composites Fabrication. With additional funding from the pan-Wales ASTUTE project, two Prince of Wales Innovation Scholarships, two EPSRC/Industry CASE studentships, one in NDT and the other in Composites, the Unit has assisted 46 companies across Wales, undertaken 32 collaborative industrial projects and has created 5 jobs. Investment induced has totalled £282,482 to date and the Unit has established itself as a leading NDT centre of expertise. Industrial engagement includes research and development with leading NDT companies such as TWI Ltd, Silverwing Ltd, Oceaneering Ltd, and manufacturing companies such as Calsonic Kansei Ltd, Tata Steel and United Aerospace Ltd.

Submitting Institution

University of Wales, Trinity Saint David

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Biomedical Engineering

Metamaterial systems and routing of elastic waves in engineered structures

Summary of the impact

It is well-known that certain bridges are susceptible to potentially dangerous uncontrolled vibrations; recent examples include London's Millennium Bridge and the Volga Bridge in Volgograd. Correcting such problems after the construction of the bridge can be extremely expensive and time-consuming. Research in the Department of Mathematical Sciences at the University of Liverpool has led to a novel approach for predicting such behaviour in advance and then modifying the bridge design so as to avoid it. During the period 2011-12 this research has been incorporated into standard design procedures by industrial companies involved in bridge design. There is an economic impact for the companies concerned (avoiding costly repairs after bridge construction) and a societal impact (improvements in public safety and also avoiding the inconvenience of long-term closure of crucial transport links).

The research is based on a novel, highly non-trivial approach that has been developed to study properties of elastic waves in complex engineered structures with a multi-scale pattern. The work has been taken up by the industrial construction company ICOSTRADE S.R.L. Italy, whose design engineer Dr Gian Felice Giaccu integrated the innovative research ideas into their standard design procedures for complex structures such as multiply supported bridges. Novel designs of wave by- pass systems developed by the Liverpool group have also been embedded in standard algorithms by the industrial software company ENGINSOFT, in the framework of a project led by their project manager Mr. Giovanni Borzi.

Submitting Institution

University of Liverpool

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering
Medical and Health Sciences: Neurosciences

3. Engineering applications of ultrasonics research

Summary of the impact

The techniques developed by the Warwick Ultrasonics Group focus on non-destructive testing (NDT) and address particular industrial needs as specified by industrial funders. These partners have included over 40 companies in the REF Impact period, ranging from SMEs to large multi- nationals operating in a range of sectors such as the heavy manufacturing, nuclear energy, food, petrochemical, transport, aerospace, power generation, equipment manufacturing and service industries. In particular, our spin-out company, Sonemat, has commercialised high-performance electromagnetic acoustic transducers (EMATs) developed by the research group, which has led to economic benefits for NDT equipment suppliers and their end users. Further industrial impact has arisen from novel NDT methodologies established by the Group.

Submitting Institution

University of Warwick

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Resources Engineering and Extractive Metallurgy

Portable Electronic Red Palm Weevil (Rynchophorus Ferrugineus Olivier) Larvae Detector [RWL]

Summary of the impact

Research led by Dr Nanayakkara has directly enabled the development of a new sensing device that offers 97% accuracy in the discovery of red weevil palm infestations, allowing early treatment and significant financial savings for coconut producers. An estimated 10% of the global palm production is damaged due to a pest called the red palm weevil. In Sri Lanka alone, contributing approximately 2% of the World's coconut production, the annual cost of the damage is estimated to be around £15 million, causing both economic and social problems. Dr Nanayakkara, in collaboration with the Sri Lanka agricultural council, has developed a portable electronic device that has been demonstrated to be 97% accurate in field trials conducted by the Coconut Research Institute (CRI) of Sri Lanka. The CRI has recommended this device to more than 5000 coconut state owners in Sri Lanka as the best available red palm weevil detector.

Submitting Institution

King's College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Medical and Health Sciences: Neurosciences

Case Study 2: Reconfigurable Computing for High Performance Applications (Reconfigurable Computing)

Summary of the impact

In the last 20 years, reconfigurable technology has transformed High-Performance Computing and Embedded Systems Design. Research of the Custom Computing and Reconfigurable Systems groups at Imperial made pivotal contributions to this transformation, targeting particularly Field-Programmable Gate Array (FPGA) technology. Since 2008, the impact of this research has been to

  1. underpin design flow for partial run-time reconfigurable designs for Xilinx FPGA devices;
  2. contribute to the start-up company Maxeler, pioneering reconfigurable computing systems and cloud services for high-performance computing in the financial and other sectors;
  3. enable near real-time risk analysis for JP Morgan's global portfolio to analyse and manage risk much faster than previously possible;
  4. achieve about 250 times speedup for Chevron's seismic modelling for oil and gas exploration, compared to the alternative use of CPU-based machines;
  5. accelerate a financial market integrity platform for BlueBee and HL Steam in hardware.

Submitting Institution

Imperial College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computation Theory and Mathematics, Computer Software
Technology: Computer Hardware

Filter Impact Case Studies

Download Impact Case Studies