Log in
Professor Kautz and his team have developed two photo manipulation and processing methods (Exposure Fusion and local Laplacian filtering) that are used to produce well-exposed photographs with tuneable local contrast. Both are robust and consistent without requiring any per-image parameter tuning. Due to its reliability and effectiveness, Exposure Fusion is now considered the standard method for blending multiple photographs into a single well-exposed photograph, and is used by a large number of commercial and non-commercial products. Local Laplacian filtering was chosen by Adobe Systems Incorporated to be the default tool for image enhancements in Adobe Lightroom and Adobe Camera Raw. As a result, these methods are now in the hands of hundreds of thousands users, who use them to create and manipulate well-exposed digital photographs.
Our research on Active Shape Models (ASMs) and Active Appearance Models (AAMs) opened up a radically new approach to automated image interpretation, with applications in industrial inspection, medical image analysis, and face tracking/recognition. We identify:
The body of research relating to perception and interpretation of medical images has generated a range of impacts on the practice and training of radiologists and reporting radiographers, with resultant benefits for patients. Engagement with the research findings has raised awareness in clinical practitioners of the implicit strategies they use during medical image interpretation and in particular the type and frequency of errors, including the prevalence of decision-making mistakes over issues of pathology perception. Practitioners have benefited through considering their individual strategies, leading to enhanced decision making processes and reducing error rates in interpretation of 2D and 3D images.
The impact has been achieved through engagement with the sector through relevant professional bodies, practitioner orientated publications and direct involvement of the research team in training and development activities for practitioners.
The impact of the research on practitioner diagnostic strategies is applicable across all areas of radiology and diagnostic radiography, but is also being explicitly pursued to determine training methods and assessment when radiologists view 3D Computed Tomography Colonography data for bowel cancer.
This case study involves the development and implementation of novel algorithms that control the mapping of depth from a scene being imaged by a camera to an image being viewed on a stereoscopic display so as to make viewing more comfortable for the human visual system. The algorithms, developed at Durham University between 2003 and 2005:
Research at Kingston University into methods for tracking pedestrians and monitoring crowds using computer vision techniques has been translated into commercial products by Ipsotek Ltd and BAe Systems, resulting in economic benefits to these companies from sales of these products.
These products have been sold to high-profile customers including the London Eye, the O2 Arena and the Australian Government, providing significant commercial benefits, employment and growth for both companies, as well as providing an economic impact for these customers.
Research at the University of Cambridge Department of Engineering on computer vision tracking led to the creation of Extra Reality Limited in 2010, which was subsequently acquired by a new company called Zappar Limited in May 2011. Zappar employs 17 staff and had revenue of GBP612k in the financial year 2012/13, an increase of 35% on the previous year.
Over 50 different brands have used Zappar's augmented reality application across more than 300 offerings in over 17 countries to deliver entertainment-based marketing interactions from 2011 to 2013. [text removed for publication] Examples of partners include Disney, Warner Brothers and Marvel. Zappar has changed attitudes in the media sector by showing that "augmented reality is finally ready for prime time" (President, Creative Strategies Inc, Time Online, 2012).
A biomarker is a measurement or physical sign used as a substitute for a clinically meaningful endpoint that measures directly how a patient feels, functions, or survives. Biomarkers can be used to assess changes induced by a therapy or intervention on a clinically meaningful endpoint.
New quantitative image analysis techniques developed at Imperial College have enabled the computation of imaging biomarkers that are now widely used in clinical trials as well as for healthcare diagnostics. This case study illustrates the resulting key impacts including:
The key impact of this project, in the form of `proof of concept', has been by influencing the practice of medical professionals (haematologists) at the Transfusion Medicine & Immunohematology section (in the hospital wing) of the Christian Medical College (CMC) Vellore (India). This has been achieved by developing and implementing system software for segmenting (and watermarking) of the nuclei of the White Blood Cells (WBCs) of peripheral blood smear images to overcome the challenge of identifying various pathological conditions. Segmentation of medical images is a highly challenging process, especially when dealing with blood smear images, which are known to have a very complex cell structure. The project has led to a significant improvement in the work process of haematologists at CMC's hospital wing where the output of this research (software system pilot) is being used. This has had an impact on the way smear slides are digitised, archived, and includes the segmentation, analysis, and watermarking of medical images at CMC. Christian Medical College (CMC) and Hospital at Vellore is an educational and pioneering research institute and a tertiary care hospital (which is the CMC's hospital wing), located at Tamil Nadu in Southern India.
UCL's research has led to changes in patient care for men with prostate cancer, through the implementation of less invasive, image-directed treatment and diagnostic strategies, and clinical trials that use these techniques. The use of medical image registration software to deliver high- intensity ultrasound therapy in a targeted manner has been shown to change the treatment plan in half of the patients participating in a clinical study. New biopsy criteria are now used routinely to classify patient risk at University College Hospital, where, since 2009, clinicians have determined the treatment options for more than 741 prostate cancer patients. The scheme has been adopted, by 15 other hospitals in the UK and internationally, where it has become the recommended standard of care, and has been used to treat more than 1,200 patients.
Our research has shown that functionalised poly(pyrroles) grown electrochemically on medical steels and other alloys as adherent, highly conformal coatings can enhance surface biocompatibility and provide a platform for implantable medical devices. Chameleon Biosurfaces Ltd. was founded to exploit this research by producing coatings for medical devices, including coronary artery stents and pacemaker implants. Up to 2009, Chameleon Biosurfaces Ltd. received £1.48M of venture capital and seedcorn funding. In 2011 all assets of Chameleon Biosurfaces Ltd. were sold to the US biomedical company Biotectix LLC.