Log in
We were the first to show that human stem cells could be used to create functional organ replacements in patients. These transplants, first performed to save the life of an adult in 2008, and then repeated to save a child in 2010, have changed the way the world views stem cell therapies. We have opened the door to a future where conventional transplantation, with all its technical, toxicity and ethical problems, can be replaced and increased in range by a family of customised organ replacements, populated by cells derived from autologous stem cells. This has altered worldview, changed clinical practice and had key influences on UK policy.
Neural stem cells offer enormous therapeutic potential for stroke but they require regulatory approval. Researchers at King's College London (KCL) devised a technology to immortalise stem cells, generated clinical-grade neural stem cell lines and demonstrated efficacy in an animal model of stroke. KCL research underpins the first approvals in the UK for a therapeutic stem cell product. This led to an industry-sponsored clinical trial of a stem cell therapeutic that has demonstrated vital improvement in all the first five stroke patients treated. KCL research has made a significant impact by considerably reducing the timetable for delivering potential therapies which will affect the life sciences industry and the process now in place acts as a model for other technology developments in this area.
Fundamental and applied research at RVC has led to introduction of stem cell therapy supporting equine tendon regeneration, advancing equine clinical practice internationally. A resultant spin-out company has delivered revenue-generating veterinary clinical services internationally and is now developing new human treatments. The therapy offers improved health and welfare, particularly in racing, as treated horses are less likely to re-injure in comparison with those managed conventionally, and consequently less likely to be culled due to premature termination of their competitive careers. The acceptance by the Medicines and Healthcare products Regulatory Agency that the equine treatment data provide validation for a phase II human clinical trial without further preclinical studies represents a rare and significant outcome for veterinary research.
Professor Andrew Webster's sociological research on developments in biomedical science has been impactful in shaping regulatory practice and influencing policy in relation to biobanking, stem cell research and regenerative medicine. In particular, his research has been used to: change donation procedures to the UK Biobank; influence regulatory decisions made by the UK Stem Cell Bank Steering Committee (UKSCBSC); contribute to regulatory practices associated with clinical trial design and adoption, and inform the UK government's investment strategy in regenerative medicine.
Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were developed by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for $0.75M in 2009. As a result, a clinical grade derivative of SHEF1 has been developed and approved for clinical trials for treating Age Related Macular Degeneration (AMD). Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports for government and research councils.
Research by Professor Parmjit Jat (first at the Ludwig Institute for Cancer Research, then part of UCL; later at the UCL Institute of Neurology) established and applied the critically important scientific concept of conditional immortalisation to a wide variety of cell lines, enabling cells to be grown indefinitely in vitro but differentiate upon altering the growth conditions. Two companies were established in partnership with Jat to exploit this research, ReNeuron (now worth £63.5m and publicly traded on the London AIM market) and XCellSyz (now part of Lonza AG). More than 20 patents based on Professor Jat's work have been issued. Reagents based on his research have been evaluated, licensed and used by 17 companies worldwide: Amgen, Amylin, Boehringer Mannheim, Cell Genesys, Chiron, Eli Lilly, Genentech Inc., Genetics Institute, Immunex, Johnson & Johnson, Medarex, Novartis, Ortho Pharm., Pfizer Inc., Regeneron, ReNeuron, Takeda, EMD Serono, and XCellSyZ/Cambrex Bioscience/Lonza.
Seven patients with avascular necrosis of the femoral head and bone cysts have been treated successfully with skeletal stem cell therapy, developed by Southampton researchers, resulting in an improved quality of life. This unique multi-disciplinary approach linking nano-bioengineering and stem cell research could revolutionise treatment for the 4,000 patients requiring surgery each year in the UK and reduce a huge financial burden on the NHS. The work has been granted three patents and the team are in discussions on development of the next generation of orthopaedic implants with industry.
T lymphocytes recognise antigens in the form of an HLA-peptide complex. HLA-peptide tetramers consist of a fluorescent HLA protein and peptide which together bind to, and therefore identify, T cells that recognise this HLA-peptide complex. As such they have proven to be a revolutionary reagent in immunology. Professor Paul Moss at the University of Birmingham has played an integral role in the clinical and commercial application of tetramers, particularly around the cytomegalovirus (CMV)-specific immune response in the context of monitoring immune recovery after transplantation and pioneering a new approach for cellular immunotherapy. The impact of this research relates to the clinical management of CMV infection in immunosuppressed patients and the creation of Cell Medica, a UK Biotech company pioneering tetramer-based cell therapy, thus demonstrating impact on clinical practice and the UK economy.
In 2008, Professors Martin Birchall and Anthony Hollander (University of Bristol) and a team of scientists and surgeons led from Bristol successfully created and then transplanted the first tissue-engineered trachea (windpipe), using the seriously ill patient's own stem cells. The bioengineered trachea immediately provided the patient with a normally functioning airway, thereby avoiding higher risk surgery or life-long immunosuppression. This sequence of events, which raised public interest and understanding around the world as a result of huge media coverage, acted as proof of concept for this kind of medical intervention. A new clinical technology with far-reaching implications for patients had passed a major test. This development demonstrated the potential of stem cell biology and regenerative medicine to eradicate disease as well as treat symptoms and has already led to the implantation of bioengineered tracheas in at least 14 other patients.
Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were generated in Sheffield by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for £0.75M in 2009. As a result, a clinical grade derivative of SHEF-1 has been developed and approved for clinical trials for treating age-related macular degeneration (AMD). In addition, Sheffield research has led to the licensing and sales of key hESC marker antibodies for stem-cell quality control. Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports and providing evidence to a Parliamentary committee. The case study has significant impact on commerce, health and welfare and public policy.