Log in
A two-dimensional flood inundation model called LISFLOOD-FP, which was created by a team led by Professor Paul Bates at the University of Bristol, has served as a blueprint for the flood risk management industry in the UK and many other countries. The documentation and published research for the original model, developed in 1999, and the subsequent improvements made in over a decade of research, have been integrated into clones of LISFLOOD-FP that have been produced by numerous risk management consultancies. This has not only saved commercial code developers' time but also improved the predictive capability of models used in a multimillion pound global industry that affects tens of millions of people annually. Between 2008 and 2013, clones of LISFLOOD-FP have been used to: i) develop national flood risk products for countries around the world; ii) facilitate the pricing of flood re-insurance contracts in a number of territories worldwide; and iii) undertake numerous individual flood inundation mapping studies in the UK and overseas. In the UK alone, risk assessments from LISFLOOD-FP clones are used in the Environment Agency's Flood Map (accessed on average 300,000 times a month by 50,000 unique browsers), in every property legal search, in every planning application assessment and in the pricing of the majority of flood re-insurance contracts. This has led to more informed and, hence, better flood risk management. A shareware version of the code has been available on the University of Bristol website since December 2010. As of September 2013, the shareware had received over 312 unique downloads from 54 different countries.
Research, led by Oxford Brookes University's Dr Mike Godley and Dr Rob Beale, into the design and analysis of scaffold structures has enabled a better understanding of their behaviour, higher standards of safety and improved design. The Group produced technical guidance to the HSE and authored the design guide TG20:08 (2008); the basis for scaffold design in the UK. The Group contributed to new Euronorms for scaffolding and the UK design guide is compatible with these. Furthermore, the Group informed a pan- European design guide for storage racking systems (2000) that later transformed with little modification into EN 15512 (2009). This is now the basis for the design of all such storage racks across Europe.
A generalized additive model (GAM) explores the extent to which a single output variable of a complex system in a noisy environment can be described by a sum of smooth functions of several input variables.
Bath research has substantially improved the estimation and formulation of GAMs and hence
This improved statistical infrastructure has resulted in improved data analysis by practitioners in fields such as natural resource management, energy load prediction, environmental impact assessment, climate policy, epidemiology, finance and economics. In REF impact terms, such changes in practice by practitioners leads ultimately to direct economic and societal benefits, health benefits and policy changes. Below, these impacts are illustrated via two specific examples: (1) use of the methods by the energy company EDF for electricity load forecasting and (2) their use in environmental management. The statistical methods are implemented in R via the software package mgcv, largely written at Bath. As a `recommended' R package mgcv has also contributed to the global growth of R, which currently has an estimated 1.2M business users worldwide [A].
The Computational Optimization Group (COG) in the Department of Computing produced new models, algorithms, and approximations for supporting confident decision-making under uncertainty — when computational alternatives are scarce or unavailable. The impact of this research is exemplified by the following:
Runway stones thrown up by aircraft undercarriage wheels can cause considerable damage to the aircraft structure. A model of runway debris lofting developed at Imperial College has been used for the new A400M military transport aircraft, which Airbus reported was `absolutely needed' during the successful development of a nose wheel debris deflector [5. A]. This deflector dramatically reduces the incidence and severity of the runway debris impacts and the associated maintenance costs and downtime of the new aircraft. Airbus has received 174 orders to date for the A400M. An indication of the cost savings comes from the Hercules C130K, the predecessor of the A400M, which incurred costs of up to £1M for each aircraft on active service in Afghanistan for the repair of runway debris damage. This cost is now eliminated for the Airbus A400M aircraft.
Novel statistical methods were developed in order to address the needs of Federal-Mogul Corporation (FM), an innovative and diversified $6.9bn global component supplier to vehicle manufacturers, with a broad range of customers in the industrial sector. During 2012, the research underpinned the production of new disc brake pad products for Audi, BMW, Ford, GM, Mercedes Benz and VW. The research has already resulted in significant benefits for the company by improving the manufacturing process, allowing it to be optimised to a mean specification, and by reducing the production cycle time by 30%.
Using powertrain system models arising from QUB research Wrightbus Ltd developed an advanced eco-friendly hybrid diesel-electric bus which won the New Bus for London contract worth £230M supplying 600 buses to Transport for London (commencing August 2012).
Demonstrating highly significant economic and environmental impacts the bus has twice the fuel economy of a standard diesel and emits less than half the CO2 and NOx. The full fleet reduces annual CO2 emissions in London by 230,000 tonnes, improving air quality and reducing greenhouse gases.
The company continues to develop the technology in new hybrid vehicles reaching worldwide, including USA, Hong Kong, Singapore and China.
Research carried out by Cairns (Maxwell Institute), Blake (Cass Business School) and Dowd (Nottingham, now Durham) in 2006 produced the `CBD' model for predicting future life expectancy. The CBD model and its extensions developed in 2009 by Cairns and collaborators have had a major impact on pensions and life industry risk management practices: multinational financial institutions [text removed for publication] and other stakeholders have relied on the CBD model to risk assess, price and execute financial deals [text removed for publication] since 2010. CBD is also used by risk management consultants to advise clients, is embedded in both open-source and commercial software, and is used by the UK's Pension Protection Fund to measure and manage longevity risk.
For aerospace vehicles, the development of new materials and structural configurations are key tools in the relentless drive to reduce weight and increase performance (in terms of, for example, speed and flight characteristics). The economic drivers are clear — it is widely recognised that it is worth approximately $10k to save one pound of weight in a spacecraft per launch and $500 per pound for an aircraft over its lifetime. The environmental drivers (ACARE 2050) are also clear — reduced aircraft weight leads to lower fuel burn and, in turn, to lower CO2 and NOx emissions. With such high cost-to-weight ratios, there is intense industrial interest in the development of new structural configurations/concepts and enhanced structural models that allow better use of existing or new materials. Analytical structural mechanics models of novel anisotropic structures, developed at the University's Advanced Composites Centre for Innovation and Science (ACCIS), are now used in the industrial design of aircraft and spacecraft. Based on this research, a new, unique anisotropic composite blade, designed to meet an Urgent Operational Requirement for the MoD, is now flying on AgustaWestland EH101 helicopters that are deployed in Theatre. In addition, the new modelling tools and techniques have been adopted by Airbus, AgustaWestland, Cassidian and NASA and incorporated into LUSAS's finite element analysis software. These tools have, for example, been used to inform Airbus's decision to use a largely aluminium wing design rather than a hybrid CFRP/aluminium wing for the A380.
Telstra is an Australian telecommunications company. In the late 1990s, Telstra was faced by a new entrant, which would be competing against it with modern technology and a lower cost structure. Telstra needed to know how much share it would lose to undertake its resource planning. More importantly, Telstra also had to understand which customers it could retain and the actions it needed to take to retain them in terms of service design and delivery, pricing, and communications.
The underpinning research was conducted in conjunction with Telstra, and met their needs. This project generated published academic research output, and in parallel had a valuable impact on the client company. This impact was estimated, by Telstra, to exceed US$146 million.
In summary: this study reports research that was prompted by the direct need of a potential beneficiary, and which successfully achieved a signifb01cant fb01nancial impact for that beneficiary.