Similar case studies

REF impact found 17 Case Studies

Currently displayed text from case study:

Enhancing the Driver Experience in Automobiles

Summary of the impact

The research addressed the problem of improving the driver experience of the sound and vibration of their automobile operating under idle conditions in city traffic. As a result of the research, Shell Global Solutions UK developed and successfully adopted a test standard protocol that changed their R&D process for making diesel fuels. The research shifted the process of making fuels from one which were oriented to the product to one that was customer focused. The new test standard protocol and the vibration acceptability metric were also adopted by Ford Motor Company Ltd., Bentley Motors, BMW, Fiat, Ferrari, Jaguar Land Rover, Peugeot-Citroen and Renault.

Submitting Institution

Brunel University

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Interdisciplinary Engineering
Medical and Health Sciences: Neurosciences

Regenerative Engine Braking Device for Buses and Other Commercial Vehicles

Summary of the impact

Prof Zhao's development of an innovative hybrid engine RegenEBD was exploited by its industrial partner, Guangxi Yuchai Machinery Company (Yuchai), the largest bus engine manufacturer in China holding 80% of the domestic market. The first RegenEBD engine buses were operated in Yulin city, where Yuchai is based, in 2011. Yuchai confirmed that these buses have demonstrated notable fuel savings of 4.7-10% (1,100-2,200 litres of fuel saving), equivalent to 3.6-7.2 tonnes of carbon saving per vehicle per year. This led Yuchai to re-align their manufacturing strategies and development efforts for 3 years (2011-2013), investing significant resources to begin manufacturing and retrofitting of RegenEBD engines in 2014. They have employed over 30 new engineers to develop and manufacture RegenEBD and purchased equipment for RegenEBD engine testing and operations. Yuchai expects that hundreds of buses equipped with RegenEBD will be on the road by 2020.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Mechanical Engineering, Interdisciplinary Engineering

New Eco-Friendly Hybrid Buses for London and Beyond

Summary of the impact

Using powertrain system models arising from QUB research Wrightbus Ltd developed an advanced eco-friendly hybrid diesel-electric bus which won the New Bus for London contract worth £230M supplying 600 buses to Transport for London (commencing August 2012).

Demonstrating highly significant economic and environmental impacts the bus has twice the fuel economy of a standard diesel and emits less than half the CO2 and NOx. The full fleet reduces annual CO2 emissions in London by 230,000 tonnes, improving air quality and reducing greenhouse gases.

The company continues to develop the technology in new hybrid vehicles reaching worldwide, including USA, Hong Kong, Singapore and China.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Civil Engineering
Built Environment and Design: Design Practice and Management

Reducing CO2 emissions and saving drivers’ fuel costs from the Ford fleet of vehicles

Summary of the impact

Impact on the environment

  • The adoption of cost effective CO2 reduction technologies across a range of Ford vehicles reduced CO2 emissions by an estimated 40,000 tonnes in 2012. This reduction applies pro rata for 2013 and becomes cumulative year on year.

Economic impact

  • Improvements to vehicle engines have saved over €25M in fuel costs to the owners of Ford vehicles in 2012.
  • Research has led to improvements that have been made to Ford products and processes; these improvements have been used to address upcoming legislation on CO2 in a cost effective manner. Future penalties of up to €0.5bn have been avoided by these improved products and processes.

Impact on practitioners

  • Improved monitoring processes, reducing variability in measurement of CO2 from vehicles within Ford by 50%, facilitating the adoption of a range of new fuel saving technologies, which helped to justify a $50M investment in the Ford UK facilities.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Mechanical Engineering, Interdisciplinary Engineering

AVERT Project (Adaptation of Vehicle Environmental performance by Remote sensing and Telematics ) a FORESIGHT Vehicle Programme

Summary of the impact

Implementing measures that can maintain, as well as improve air quality is a constant challenge faced by local authorities, especially in metropolitan cities. The AVERT, EPSRC/DTI link project, led by Samuel and Morrey of Oxford Brookes University, were tasked at identifying and proposing a new strategy to limit the amount of pollutants from vehicles dynamically using remote sensing and telematics. Firstly, it established the magnitude of real-world emission levels from modern passenger vehicles using a newly developed drive-cycle. Secondly, it demonstrated a broad framework and limitations for using existing on-board computer diagnostic systems (OBD) and remote sensing schemes for the identification of gross polluting vehicles. Finally, it provided a strategy for controlling the vehicle to meet air pollution requirements. The outcomes had direct impact on Government policy on "Cars of the Future", roadside emission monitoring, and the business strategies for both the Go-Ahead Group and Oxonica Ltd.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Automotive Engineering, Environmental Engineering, Interdisciplinary Engineering

Modelling and control of curve squeal

Summary of the impact

Rail transport is the greenest form of transport in that it produces the least pollution of the environment. However, the noise from squealing trains has been a major factor preventing the wider use of rail transport in populated areas, especially in cities, where trains have to traverse tight curves in built-up areas. Research carried out at Keele University on curve squeal gave crucial input to developing an effective control method (KELTRACK friction modifier, developed by the company LB Foster Friction Management). This is a device by which a thin film is applied at the wheel-rail interface, which in turn destroys the generation mechanism of curve squeal. The KELTRACK friction modifier is now used in transport systems all over the world, especially in underground systems, such as the metros of Tokyo, Beijing and Madrid.

Submitting Institution

Keele University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Mechanical Engineering, Interdisciplinary Engineering

A 60% reduction in diesel use: the impact of optical diagnostics on dual-fuel engines

Summary of the impact

Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Energy saving from improved fuels, engine combustion, and reduced hazards.

Summary of the impact

Experimental research and computer modelling in the School of Mechanical Engineering have been applied by engine and oil companies to reduce fuel consumption and noxious emissions. Studies into high pressure explosions and burn rates have helped industry improve engine efficiencies by up to 30% and contributed to the development of much improved fuels. These new products perform better, are less environmentally damaging and have generated new company revenues. Research into burn rates, detonations, and large jet-flames has also informed health and safety investigations, particularly the UK Government Inquiry into the Buncefield explosion, providing calculations and explanations of the blast, and recommendations on future safety controls.

Submitting Institution

University of Leeds

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Interdisciplinary Engineering

UOA09-12: Validating the design of the AJ133 engine

Summary of the impact

Improved measurement of fuel behaviour in automotive engines has contributed to the success of the AJ133 V8 engine, which powers over [text removed for publication] vehicles sold since 2009. The research, carried out at the University of Oxford in collaboration with Jaguar Land Rover (JLR), developed techniques to improve the understanding of combustion dynamics in engines and consequently enabled improvements to fuel consumption, emissions and engine reliability. Impacts include contributions to (1) JLR's improved engine design process and (2) improved fuel efficiency and thus lower emissions.

Submitting Institution

University of Oxford

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Catalytic Converter Research Leads to Major New Product for Motor Vehicles

Summary of the impact

Globally there are estimated to be 60 million cars produced each year. These all require catalysts that need testing to meet stringent emissions legislation. Catagen Ltd, a spin-out from Queen's University has developed a product for testing motor vehicle catalysts that is 85% cheaper to operate than traditional methods and represents a 98% reduction in CO2 emission from testing and an 80% reduction in energy input.

Major global customers including GM motors and Fiat have adopted this revolutionary patent protected technology and international sales growth has been recognised, winning an all- Ireland business award for BEST High Growth Company 2012

Submitting Institution

Queen's University Belfast

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies