Log in
Gateway technologies have enhanced the ability of end-users to engage with high-performance computing (HPC) programs on massively distributed computing infrastructures (DCIs) such as clusters, grids and clouds. The technologies are focussed on the needs of business, industry, organisations and communities; enabling them to extract added business and social benefit from custom high-value services running on a wide range of high-performance DCIs. Typically, such services are based on computational workflows tailored to specific business needs. DCIs may comprise resources already owned (eg. clusters) combined with resources rented on a pay-as-you- go basis (eg. clouds). Several companies and organisations worldwide are currently using the technologies.
This case study reports our work on the development, application and dissemination of innovative cloud-based technologies to industrial problem domains. First, decentralised scheduling is implemented within federated Clouds, to facilitate the new drug discovery process for a global pharmaceutical company. Second, multi-objective approaches to the management and optimisation of video processing and analysis workflows in distributed environments is described in the context of an SME organisation that is developing new products, services and markets. Both of these examples have attracted, and continue to attract, commercial funding, and demonstrate the efficacy of knowledge transfer into industry from University of Derby (UoD) research.
PERMIS is a suite of open source security software, written mostly in Java, which provides an application-independent, standards-based, authorisation infrastructure that enables software developers to incorporate state of the art authorisation functionality into their systems with a minimum of effort.
PERMIS has been integrated into a wide variety of environments including grids, clouds and more specialised domains, leading to more secure systems for end users at a reduced cost of implementation; for example, the Swiss Ministry of Defence has adapted PERMIS for use in an air force application. It consistently gets more than 1000 downloads per year, with over 100 new users registering annually.
Research in the UoA has underpinned the development of the current version of BOINC (Berkeley Open Infrastructure for Network Computing), a technology to enable secure volunteer computing. The research was done as part of the climateprediction.net project that is currently managed as CPDN through the UoA, supporting international climate modelling. CPDN models climate change using donated cycles on users' computers, with almost 700,000 users registered by 2013. Significant work to develop BOINC in CPDN has enabled the public to engage with science more easily and conveniently. BOINC has become recognised as the key open-source tool for volunteer computing and is also available to companies to create their own grid networks. It has been used for a range of applications from driving experiments to find the Higgs particle to using home PCs to detect earthquakes.
Cloud computing is now used ubiquitously in consumer and commerce domains yielding unprecedented access to computing and data handling at affordable prices.
Work in this field was pioneered at the University of Southampton (UoS) from 1998 onwards and commercialised from 2008 through Dezineforce to enable companies to exploit cloud computing in engineering:
Throughout this period the team has also engaged in outreach to inspire and educate the next generation of scientists and engineers about High Performance and Cloud computing including a YouTube video with 485,000 hits and over 300 articles in media.
Research undertaken between 2002 and 2012 at Birkbeck has helped establish a participatory approach to cyber-physical computing as the predominant methodology for the construction of mobile and pervasive computing systems. Cyber-physical systems intimately interlink material entities and their information representations as existing on the Internet. Our specific research contributions in systems architecture, privacy protection and human dynamics have demonstrated how the user's activity can be exploited as the core ingredient in building such systems. Our research has resulted in the implementation of applications that are used to monitor biodiversity across the globe, to assess and support Parkinson's disease patients in the UK, to improve the well-being of office workers in London, to engage the public in a debate about the costs and benefits of pervasive computing, and to inform legislatures in the UK and the US.
Grid computing research conducted by the High Energy Physics (HEP) Group at the University of Cambridge, Department of Physics has enabled software company IMENSE to develop and commercialise a range of content based image recognition products. The research gained substantial media interest and was featured at the BA Festival of Science 2008.
The invention of a novel component-based model and approach for rapid distributed software development are the core research results for this case study. Using our methodology we have built a fully functional platform — the Grid Integrated Development Environment (GIDE) — which has been used for the development of user applications by several industrial partners. The main economic impact of our work is the new component-based development process resulting in much higher productivity and shorter development cycle. In addition, the four new international standards approved by ETSI provide impact on the wider professional community in the areas of grid and cloud computing.
The research in this case study has pioneered knowledge management technology. It has had major impact on drug discovery and translational medicine and is widely adopted in the pharmaceutical and healthcare industries. The impacts are:
Virtual Worlds are challenging to develop and deploy in small community settings. Our research into their measurement, design, and usability has allowed us to radically reduce the cost and footprint of a platform needed to support the collaborative creation of content, letting communities share their histories with both local and global audiences. Integrating this platform with an approach to virtual fieldwork lets communities explore authentic recreations of historical scenes, giving new perspectives on cultural heritage that stimulate reflection and understanding across the generations and enhancing the visitor experience by making new modes of interaction available for museums. This has enabled educational and cultural heritage bodies in Scotland to connect with new audiences and increase public participation in local heritage.