Log in
Computational research work at Swansea concerned with finite element/discrete element analysis, has made a profound impact on the solution of industrial problems. The development and implementation of novel computational algorithms and their subsequent application to leading edge engineering and scientific problems has been effected through the commercial software system ELFEN, developed collaboratively with Rockfield Software Ltd, a spin-out company from Swansea University. ELFEN has enabled the company to expand through the development of an international reputation as a leading provider of computational technology to the defence, manufacturing, oil recovery, mining and other sectors. Specific examples of economic benefit described in this case study are (i) design methodology for weight reduction in glass container production resulting in significant energy and CO2 emission savings and (ii) computational modelling of rock blasting operations leading to substantial economies in the mining industry.
Graph-theoretic and mathematically rigorous algorithmic methods developed at the University of Hertfordshire have improved the applicability of compiler technology and parallel processing. A compiler developed in the course of a ten-year research programme at the university has been successfully applied to a number of commercial problems by re-purposing the research tool. NAG Ltd has adapted the tool into a commercial product [text removed for publication]. Numerous applications of the mathematical methods (such as type-flow graphs used conjointly for correctness and optimisation) have been deployed by industry (including SAP, SCCH, German Waterways Board) working closely with the university.
A generalized additive model (GAM) explores the extent to which a single output variable of a complex system in a noisy environment can be described by a sum of smooth functions of several input variables.
Bath research has substantially improved the estimation and formulation of GAMs and hence
This improved statistical infrastructure has resulted in improved data analysis by practitioners in fields such as natural resource management, energy load prediction, environmental impact assessment, climate policy, epidemiology, finance and economics. In REF impact terms, such changes in practice by practitioners leads ultimately to direct economic and societal benefits, health benefits and policy changes. Below, these impacts are illustrated via two specific examples: (1) use of the methods by the energy company EDF for electricity load forecasting and (2) their use in environmental management. The statistical methods are implemented in R via the software package mgcv, largely written at Bath. As a `recommended' R package mgcv has also contributed to the global growth of R, which currently has an estimated 1.2M business users worldwide [A].
Spatial decomposition methods have been extended to apply to spatial, scale, and temporal domains as a result of work at the Numerical and Applied Mathematics Research Unit (NAMU) at the University of Greenwich. This work has led to a numerical framework for tackling many nonlinear problems which have been key bottlenecks in software design and scientific computing. The work has benefitted the welding industry in the UK because these concepts are now embedded, with parallel computing, in the industry's modern welding design process software.
Molecular dynamics (MD) simulations are used extensively in chemistry, biology and material sciences, placing huge demands on computer resources. Because these simulations explore the behaviour of molecules at defined ambient temperature, temperature control (thermostatting) is an essential element of MD algorithms. In a series of papers published from 2009 on, Leimkuhler (Maxwell Institute) and his collaborators developed improved numerical methods for temperature control. They proposed new algorithms and analysed their properties (such as fidelity to the dynamical model, efficiency and stability). The new algorithms have since been implemented in the world's leading MD software packages including DL-Poly, AMBER, NAMD and Accelrys's Material Studio. The research has had clear economic impact on the commercial company Accelrys by improving its product, and more broadly on the community of MD code users worldwide by providing improved simulation tools.
The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.
The Computational Mechanics and Reliability Group at the University of Greenwich has been developing computational methods for predicting material behaviour and component reliability since the late 1990s. This case study details economic and environmental impacts and impacts on practitioners. In particular it shows how our expertise has:
Fluid modelling approaches devised by the Materials and Engineering Research Institute's (MERI's) materials and fluid flow modelling group have impacted on industrial partners, research professionals and outreach recipients. This case study focuses on economic impacts arising from improved understanding which this modelling work has given of commercial products and processes. These include: metal particulate decontamination methods developed by the UK small company Fluid Maintenance Solutions; liquid crystal devices (LCDs) manufactured by the UK SME ZBD Displays; and an ink-droplet dispenser module originally invented at the multinational Kodak. Additionally, the modelling group's computer simulation algorithms have been adopted by industrial research professionals and made available via STFC Daresbury's internationally distributed software package DL_MESO. Finally, the group has developed, presented and disseminated simulation-based materials and visualisations at major public understanding of science (PUS) events.
This case study describes the creation and use of advanced simulation technology by international mining corporations to optimise high value metal recovery. The technology involved the development of advanced novel computational methods and software tools to model industrial scale heap leach processes for large scale industrial application at major mining operations. This focus on the development of optimised operational strategies has produced considerable economic benefits measured in the $multi-millions to industrial sponsors, including $58 million dollars in additional revenue for one multi-national corporation over one year following the adoption of engineered heaps based upon the advanced simulation tools from Swansea.
Research into the operational characteristics and applicability of biological reaction networks, carried out at the university in collaboration with groups at Caltech and Sony Systems, revealed the pressing need for a standard format that could be used for storage and exchange of mathematical models of such systems. Hertfordshire researchers played a crucial role in the initial design, dissemination and early exploitation of the Systems Biology Markup Language, SBML, now recognised as the de facto standard format for this purpose. Several major scientific publishers operating across academic boundaries require their authors to use SBML, and 254 software tools, including MATLAB and Mathematica, are now SBML-compliant. Online forums testify to a sizeable, international user-developer community that encompasses engineers, biologists, mathematicians and software developers.