Similar case studies

REF impact found 29 Case Studies

Currently displayed text from case study:

Trimethylaminuria is a genetic disorder

Summary of the impact

Research by Professor Elizabeth Shephard at the UCL Research Department of Structural and Molecular Biology has led to identification of the genetic origin of Trimethylaminuria (TMAU), commonly known as fish-odour syndrome. This has led to genetic diagnosis and genetic counselling for TMAU in the UK, Europe, USA and Canada, and the publication of guidelines for treatment and diagnosis. Shephard has engaged closely with patient groups over the years to publicise her findings. There is now an increased understanding among medical practitioners and the public that the body odour produced is due to a metabolic defect of genetic origin, and is not due to poor hygiene.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics

UOA01-14: Defining Craniofacial Disorders for Improved Clinical Management

Summary of the impact

As a result of research from Oxford's Professor Andrew Wilkie, accurate genetic diagnostic tests are now available for over 23% of all craniosynostosis cases nationally and internationally, leading to improved family planning and clinical management of this common condition worldwide. The premature fusion of cranial sutures, known as craniosynostosis, is a common developmental abnormality that occurs in 1 in 2,500 births. Over the past 20 years, the University of Oxford's Clinical Genetics Lab, led by Professor Wilkie in collaboration with the Oxford Craniofacial Unit, has identified more than half of the known genetic mutations that cause craniosynostosis and other malformations of the skull.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Clinical Diagnosis and Management of Xeroderma Pigmentosum and Related Disorders

Summary of the impact

Individuals with Xeroderma pigmentosum (XP) are extremely susceptible to sunlight-induced skin cancers and, in some cases, develop neurological problems. Alan Lehmann has developed a cellular diagnostic test for this disorder. This test is now conducted as an integral part of a multi-disciplinary XP specialist clinic in London, which was established as a direct result of Alan Lehmann's research in Sussex and which has led to the improved diagnosis and management of the disorder and an improved quality of life for affected individuals.

Submitting Institution

University of Sussex

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Development of Genetic Tests for Inherited Human Disorders

Summary of the impact

Research by Professor David Brook on inherited disorders has made a major contribution to the human genetics field. The work involved gene identification and mutation detection for genotype/phenotype correlation analysis in patients, which has led to the development of diagnostic tests for inherited conditions including myotonic dystrophy type 1 (DM1), Holt-Oram Syndrome (HOS), and campomelic dysplasia (CD). The tests have benefitted patients in the UK and throughout the rest of the world and in many cases they have been used as the definitive diagnostic measure. The assays developed have also been used in affected families for prenatal diagnosis to enable informed reproductive decisions.

Submitting Institution

University of Nottingham

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Elucidating the genetics of deafness leads to better diagnosis and clinical services

Summary of the impact

Our research has had impact on the activities of practitioners and their services, health and welfare of patients, on society and on public policy. New diagnostic tests for genetic deafness have been introduced, and healthcare guidelines and professional standards adopted through our investigation of the aetiology of childhood-onset hearing loss. Disease prevention has been achieved by our research on antibiotic-associated deafness, public awareness of risk to health and hearing has been raised, and we have increased public engagement through debate on scientific and social issues. We have also influenced public policy on ethics of genetic testing for deafness with our research resulting in improved quality, accessibility and acceptability of genetic services among many hard-to-reach groups (deafblind, culturally Deaf, and the Bangladeshi population of East London).

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Clinical Sciences, Neurosciences

Diagnosis of genetic diseases with immune or neurological dysfunction

Summary of the impact

The Caldecott/Jeggo/O'Driscoll laboratories have identified human genetic diseases that are caused by defects in genes involved in DNA strand-break repair. Many of these diseases are associated with neurological pathologies such as cerebellar ataxia (resulting in poor balance, movement control, and patients often being wheelchair bound), microcephaly (smaller-than-normal head circumference), and developmental delay. The Caldecott/Jeggo/O'Driscoll laboratories have engaged in identifying/diagnosing patients with such diseases as a service to clinicians/clinical geneticists in the UK National Health Service (NHS) and worldwide. Since 2008, these laboratories have identified the underlying genetic defect in more than 150 patients with a range of hereditary DNA damage-related disorders. In particular, these laboratories have diagnosed patients with genetic defects in the DNA damage response genes Lig4, NHEJ1-XLF, DCLRE1C-Artemis, PRKDC-DNA-PKcs, PCNT, ORC1, ATRIP, ATR, and TDP2. These diagnoses benefit both the clinical geneticist and the patient; identifying not only the cause of the patient's disease but also enabling better disease management. For example, if not first diagnosed, standard chemotherapeutic regimes can be fatal in cancer patients who harbour homozygous TDP2 mutations, and standard conditioning regimes used during bone-marrow transplantation can be fatal in LIG4 Syndrome patients. These diagnoses can therefore translate into increased patient survival.

Submitting Institution

University of Sussex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics

Identifying Patients with Rare Forms of Erythrocytosis

Summary of the impact

Diagnostic tests have been successfully developed for identification of the cause of erythrocytosis, particularly in patients with unexplained forms of this rare disease. A diagnostic service with worldwide reach was developed for the genetic characterisation of patients that carry mutations identified by the Queens's group. It deals with approximately 100 samples per year referred for investigation for this rare disease from the UK, Europe and further afield. Proper diagnosis helps in management of patients with erythrocytosis where the problem is not mutation in one of the familiar causative genes. A pan-European web-based database has been established to collect information on long-term outcomes to inform patient management.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Oncology and Carcinogenesis

UOA01-13: The Paternal Age Effect: His Clock is Ticking

Summary of the impact

Research from the University of Oxford's Clinical Genetics Laboratory initiated the introduction of an upper age limit of 40 years for sperm donors in the UK and internationally and led to increased public awareness of the effect of paternal age in the transmission of inherited disease. Oxford researchers, led by Professor Andrew Wilkie, were the first to describe the exclusively paternal transmission of de novo mutations, in a rare craniofacial disorder called Apert Syndrome; they also showed that the accumulation of such mutations leads to a disproportionate risk of disease transmission with age. By showing that the frequency of mutations increases with paternal age, this research contributed to important changes in clinical practice relating to sperm donation. This has also had a significant cultural impact, as the research and its clinical outcomes have challenged public perceptions of paternal age.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Political

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences, Oncology and Carcinogenesis

Health, agriculture and industry benefit from Bristol’s groundbreaking molecular toolkit

Summary of the impact

The Basidio Molecular Toolkit developed at the University of Bristol has enabled the pharmaceutical industry to achieve the efficient genetic manipulation of a group of basidiomycete fungi (mushrooms and toadstools) and thereby produce medically important antibiotics and proteins cost-effectively. For example, GlaxoSmithKline's collaboration with the Bristol team saved 70,000 hours of research and development in getting a natural antibiotic called pleuromutilin to market. In China, the system is used to produce medicinal anti-cancer proteins from fungi in commercially viable quantities. In addition, government agricultural research programmes in the US and Ireland have adopted the toolkit to increase the efficiency of their search for disease-resistant crops in the interests of farmers, consumers and economies.

Submitting Institution

University of Bristol

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics, Microbiology

Molecular genetic characterisation of human and animal disorders leading to improved diagnosis, prevention and treatment of inherited disorders

Summary of the impact

Research at the UCL School of Pharmacy has positively influenced healthcare in startle disease/hyperekplexia, a rare disease that affects humans and several animal species, including dogs, horses and cattle. The identification and functional characterisation of mutations in genes involved in human startle disease by researchers at the School has improved genetic diagnostics and patient care. Our research on startle disease in cattle and dogs has also led to new non- invasive diagnostic tests that have alleviated animal suffering and reduced negative economic impacts on farmers. Overall, our findings have been translated into tangible benefits for the human and animal populations affected by this disease and have changed the way in which the disease is diagnosed and treated. We have also significantly increased the awareness of this rare disorder by communicating with academics, healthcare and veterinary professionals, and the general public.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Filter Impact Case Studies

Download Impact Case Studies