Similar case studies

REF impact found 28 Case Studies

Currently displayed text from case study:

Development of periodontal disease predictive technologies and their commercialisation by two SMEs and three multi-nationals

Summary of the impact

Our biomarker research and underpinning technologies have commercially impacted upon the global R&D strategies of Unilever, Philips and Mars, realising new market areas for them, resulting in several million GBP invested in related R&D as well as "claim support" for products both in development and already available on shelves. Unilever have adopted biomarker outcomes as endpoints in clinical trials of new products, and Philips and Mars are developing with us saliva-based near-patient diagnostic tests for the human and small animal markets. We have also spun out two SME's: A) Oral Health Innovations (OHI) Ltd has developed online risk and disease analysis software for oral conditions, which was piloted, adopted and launched by Denplan, the UKs largest dental capitation plan operator (accessing 6500 dentists and 1.8 million patients), at the 2013 annual British Dental Association conference; and B) GFC Diagnostics makes SmokeScreen™ a non-invasive, sensitive and objective saliva test developed from our biomarker research at Birmingham University. Both technologies have already provided demonstrable social and commercial impact and given their uptake to date, will also deliver economic, environmental and health impacts.

Submitting Institution

University of Birmingham

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Dentistry, Neurosciences

"Shark-antibodies" as a platform for biologics drug development

Summary of the impact

Together the University of Aberdeen and Aberdeen city have become a major centre for biologics, the synthesis of medicines from compounds derived from living organisms. Commerce and industry have invested heavily in the process, creating specialist knowledge, jobs and an internationally-recognised network of expertise that promises further growth. This has arisen from ground-breaking research in Aberdeen into the VNAR antibody class that are the smallest binding sites so far identified in the animal kingdom and led to the validation of a new drug discovery platform. Spin-out companies were created (Haptogen Ltd, Cyclogenix Ltd and the pre-commercialisation vehicle Elasmogen) to exploit the emerging technology, which has completed successful efficacy trials in several animal models including late stage pre-clinical models, with trials in humans expected.

The claimed impact is therefore that: spin-outs have been created, highly skilled people have taken up specialist roles in companies; industry and venture money has been invested in patent protected research and development, business has adopted a new technology, award winning industry collaborations have been forged and jobs have been created.

Submitting Institution

University of Aberdeen

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology

Wound Care; Point of Care Diagnostic Platforms for fast detection of unlabelled infection biomarkers result in establishment of Mölnlycke Health Care AB in Scotland

Summary of the impact

Research; date; attribution:

Since 2005, EaStCHEM research expertise in electrochemistry and in sensing and detection, in partnership with University of Edinburgh researchers and expertise from the associated disciplines of medicine, engineering and physics and funded by the Scottish Intermediary Technology Institute (now Scottish Enterprise, SE) has formed a multidisciplinary team and developed the research outputs and novel platform technologies with enhanced detection characteristics (sensitivity, specificity, ability to handle clinical samples, rapid time-to-result) applicable to point-of-care diagnosis of wound infection state.

Significance: This technology was exclusively licensed from SE by Mölnlycke Health Care AB in 2012. Mölnlycke Health Care AB also established a new subsidiary, MHC Scotland Ltd in the BioQuarter in Edinburgh, to develop this technology, marking their entry into the multibillion dollar global point of care diagnostics market, as well as employing 5 UoE researchers.

Reach: Mölnlycke Health Care AB is a leading innovator in infection control in hospitals having ~7000 employees worldwide and with manufacturing plants in 9 countries.

Beneficiaries: The impact deriving from the underpinning research is to Mölnlycke Health Care AB as evidenced by formation of a significant new business venture and alteration of business practice, through the adoption and commercialisation of our new technology platform and the employment of 5 UoE staff from the research programme as human capital in MHC Scotland Ltd.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Technology: Medical Biotechnology
Medical and Health Sciences: Neurosciences

Atlas Genetics – “Test and Treat” diagnostics for infectious diseases

Summary of the impact

This case study outlines the impact in generating investment in a spin-out SME and in developing a technology for clinical diagnosis based on chemistry research carried out in Bath. The research led to a spin-out company, Atlas Genetics, which has raised over £18M funding in the REF period specifically to develop the Atlas io platform, novel technology for rapid (<30 minute) and robust detection of infectious diseases suitable for point-of-care. The investment has created new jobs for highly skilled workers at the cutting-edge of medical diagnostics, with Atlas currently employing 36 staff. The io platform has been fully developed and has undergone successful clinical tests on multiple infections (based on bespoke Chemistry developed at Bath) prior to clinical trialling and rollout in Europe and the United States.

Submitting Institution

University of Bath

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Physical Chemistry (incl. Structural)

Developing unique conjugation (PEGylation) technology and commercial spinout through PolyTherics Ltd.

Summary of the impact

A novel conjugation technology has been developed to enable site-specific attachment of polyethylene glycol (PEG) to proteins to extend the in vivo half-life of biopharmaceuticals. The technology has been commercialised by an Imperial College spin-out company, PolyTherics Limited. In 2013, the merger of PolyTherics with Antitope Limited, enhanced the company's biopharmaceutical technology development offering. PolyTherics issued new shares to the value of £13.5 million to investors and Antitope shareholders in connection with the merger.

The company has enabled the development of novel forms of interferon 03b2 (for the treatment of multiple sclerosis) and blood factors VIIA, VIII and IX (for the treatment of haemophilia A and B) utilising original Imperial TheraPEG™ technology. This is achieved through licences granted by PolyTherics to Nuron Biotech and Celtic Pharma Holdings who are in early pre-clinical development. PolyTherics has further developed the conjugation technology (ThioBridge™) for its application in the creation of stable, homogeneous antibody-drug conjugates for the targeted cancer therapy.

Polytherics has impacted the UK economy generating intellectual capital, capital investment, new employment and novel compounds to treat disease.

Submitting Institution

Imperial College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Medical Biochemistry and Metabolomics

Atlas Genetics Limited: a University of Bath spin-out company providing novel technology for rapid diagnosis of infectious diseases.

Summary of the impact

Atlas Genetics Ltd is a University of Bath spin-out company established in 2005 by Dr John Clarkson, a former lecturer in the Department of Biology and Biochemistry (DBB). In collaboration with DBB researchers, Atlas Genetics developed novel technology for rapid (<30 minute) and robust detection of infectious diseases at the point-of-care. Atlas Genetics has raised over £22m funding specifically to develop the Atlas ioTM detection system, which combines a patented electrochemical detection system with probes for specific micro-organisms within a small disposable cartridge. Different probe cartridges are used to detect a range of pathogens that have critical clinical importance and large-scale socio-economic significance, including Candida, methicillin resistant Staphylococcus aureus (MRSA), bacterial meningitis, and sexually transmitted diseases (STDs) Trichomonas, Chlamydia and Gonorrhoea. Candida research in DBB underpinned the specificity, sensitivity and application of the technology to clinical samples and was used in seeking capitalization for Atlas.

Atlas Genetics re-located from the University to a nearby business park and employs 35 full-time staff, some having moved from academia into the company largely thanks to the synergistic relationship with University of Bath researchers. The ioTM platform has undergone successful clinical tests on Chlamydia and Trichomonas at Johns Hopkins University, USA. The ioTM platform and Chlamydia test is scheduled for clinical trials in 2014, with roll out in Europe and the USA, pending regulatory approval, providing global reach within the $42bn in vitro diagnostics market.

Submitting Institution

University of Bath

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Technology: Medical Biotechnology
Medical and Health Sciences: Clinical Sciences, Medical Microbiology

T: Commercialisation of ScreenTape™ - a microfluidic tool for genomics, next-generation sequencing and proteomic analysis

Summary of the impact

Impact: New business, technology, intellectual property and employment resulting from the invention and exploitation of a micro-scale laboratory device (ScreenTapeTM).

Significance: New business and technology commercialised resulting in sales of novel products worldwide, acquisition by Agilent Technologies Limited (Agilent) for £[text removed for publication] in 2011, product sales of over £[text removed for publication] to August 2013, generation of sustained employment for 50-160 people, major inward investment (£6M) by local investors followed by a US multinational.

Beneficiaries: The economy, commerce, employment, research and diagnostic laboratories, Agilent Technologies Inc. (Agilent).

Attribution: UoE Prof Peter Ghazal and Dr Douglas Roy inventors on granted patent, establishment of multi-disciplinary research in biochip medicine, collaborators with ex-Motorola engineers, co-founders of spin-out company for commercialisation of intellectual property.

Reach: Worldwide, including employment and product sales. Inward investment to UK.

Submitting Institution

University of Edinburgh

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Biological Sciences: Genetics
Information and Computing Sciences: Artificial Intelligence and Image Processing

Antibodies to ACTH and related hormones as diagnostic tools

Summary of the impact

Measurement of hormones is essential to the understanding and diagnosis of endocrine diseases. White and her research group have developed unique antibodies that are widely used in diagnostic assays for adrenocorticotrophic hormone (ACTH) and related peptides, including the first and only kit for measuring pro-opiomelanocortin (POMC), the precursor of ACTH. These assays are used worldwide for diagnosis, decisions on treatment, monitoring for recurrence of tumours and prognosis in a number of patient groups with life-threatening endocrine disorders. Global sales of the ACTH Elecsys tests by Roche exceeded 6 million kits since 2008. AstraZeneca has used the POMC and ACTH assays in its drug discovery programmes in the cardiovascular and metabolic diseases therapy area. The antibodies therefore have had health impact in relieving suffering and in improving patient care, as well as commercial impact in worldwide sales of assays and influencing drug development strategies.

Submitting Institution

University of Manchester

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

4. Cardiff chemiluminescent technology underpinning global adoption of nucleic acid-based clinical diagnostic assays.

Summary of the impact

Cardiff University research led to second-generation chemiluminescent technology. The invention allowed for internal amplification control in nucleic-acid based clinical diagnostic assays for infectious disease and produced results with greater accuracy and fulfilled previously unmet regulatory standards. Adopted by the market leader in nucleic acid diagnostics (a sub-licensee of Cardiff University) the Cardiff technology is used globally in more than 60 million in vitro diagnostic tests annually. Sales of the tests approach $500 million per year and the sub-licensee was subsequently sold for $3.8 billion.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Clinical Sciences

Roadmapping

Summary of the impact

Research undertaken at the University of Cambridge Department of Engineering (DoEng) since 1998 on strategic technology management resulted in a principled and generalised method of creating roadmaps for technology and innovation management. This research was developed into a complete toolkit through case studies and consulting by the DoEng's wholly-owned subsidiary Institute for Manufacturing Education and Consulting Services Ltd (IfM ECS). Organisations in 26 countries commissioned over 115 consulting projects during 2008-13, benefiting through improved business performance and practices, the adoption of new technologies or processes and the better alignment of technology strategies with policy and commercial imperatives. IfM ECS's revenue from consulting, publications and events based on the research findings was GBP 3,479,758 in the period.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Commerce, Management, Tourism and Services: Business and Management

Filter Impact Case Studies

Download Impact Case Studies