Log in
This case study describes how computational research in boundary problems at Middlesex was applied to bio-imaging using Electrical Impedance Tomography (EIT) for imaging brain function, lung function and tumour detection, and the development of Optical Tomography of brain function in neonates. This has resulted in the contribution of several public domain, open source resources to the international industrial and commercial research communities such as novel reconstruction algorithms, geometric models for generating accurate finite element and boundary element forward models and methods to generate subject-specific forward models which have been exploited as detailed below. It has also resulted in two patents.
Mathematically-based image processing techniques developed at the University of Cambridge have helped bring about a revolution in the ability to extract quantitative measurements from laboratory experiments in fluids. Techniques and software tools developed from this research and incorporated into commercial software are now used in engineering, physics and mathematics research laboratories around the world on projects ranging from fundamental research to ones with strong industrial connections.
The Fault Dynamics Research Group (FDRG) have designed and executed analogue experiments to replicate the 3D/4D geometry of oil and gas exploration targets. The main beneficiaries are the international petroleum industry. The research is "pivotal to British Petroleum's subsurface developments" (R. Humphries BP 2012) in determining the number of multi-million pound wells required to access reserves. FDRG models "changed the way seismic data (was) interpreted" (Chief Scientist, Geoscience Australia 2012) in particular in the NW Australian frontier with "BP Exploration (Alpha)....work program(s) of $600 million" (Chief Scientist, Geoscience Australia 2012).
Professor Hani Hagras' research into type-2 Fuzzy Logic Controllers (FLCs) underpins novel control systems which avoid the drawbacks and shortcomings of the type-1 FLCs used in numerous real world applications. Type-2 FLCs, developed at Essex, enable challenging applications to be realised and managed with better accuracy and robustness. Such applications include:
UCL's research has led to changes in patient care for men with prostate cancer, through the implementation of less invasive, image-directed treatment and diagnostic strategies, and clinical trials that use these techniques. The use of medical image registration software to deliver high- intensity ultrasound therapy in a targeted manner has been shown to change the treatment plan in half of the patients participating in a clinical study. New biopsy criteria are now used routinely to classify patient risk at University College Hospital, where, since 2009, clinicians have determined the treatment options for more than 741 prostate cancer patients. The scheme has been adopted, by 15 other hospitals in the UK and internationally, where it has become the recommended standard of care, and has been used to treat more than 1,200 patients.
Research and knowledge exchange led by Prof. Jefferies in sustainable urban drainage systems (SUDS) has driven the design and integration of SUDS into urban environments, into urban planning and everyday practice in the UK, Europe and worldwide. This research has contributed to the development of policies and established guidelines that have informed the set-up of operational and monitoring systems and the reduction of a training manual which is impacting widely on the sector (downloaded >40.000 times). Evidence gathered through this research has supported drainage policy nationally and now underpins important parts of urban infrastructure, improving environments and their resilience to flooding.
Two books and review/research articles in Italian have disseminated the findings from the underpinning research on creating false autobiographical memories and the dangers of inadequate interviewing techniques. This work has critically increased awareness in the Italian legal system amongst both barristers and judges, to the point of shaping the practice of interviewing witnesses in that country. It has also informed all verdicts on child sexual abuse by the Supreme Court of Cassation.
Knowledge of the three-dimensional structures of macromolecules is a prerequisite for understanding their function at the atomic level, an essential component of modern drug development. Most structures are determined by X-ray crystallography: the majority using molecular replacement (MR, which exploits known structures of related proteins), and about half of the remainder using single-wavelength anomalous diffraction (SAD). The Phaser crystallographic software, developed by Read and colleagues, implements powerful new likelihood-based methods for MR and SAD phasing and has made a large impact, accelerating over the period 2008-2013. At the pharma giant, AstraZeneca, Phaser is considered the "tool of choice" for solving structures by MR.
Research at Essex underpinned the development and application of near infrared muscle oxygen spectroscopy (NIRS) devices that have had medical and sporting applications in three areas:
1) Research on second derivative spectroscopy underpinned the concept of the Hutchinson Technology InSpectraTM tissue spectrometers, and later Essex publications validated the technology. The current device is used for muscle research worldwide, including in sports and exercise science. It has US Food and Drug Administration approval and has been sold for use in many US hospitals with improved clinical outcomes and economic benefits.
2) Applied research, undertaken at Essex, made first use of the Artinis Inc. PortamonTM portable NIRS device in elite athletes (UK short track speed skaters). Subsequently this technology has been used to assist the training of a number of sports teams including [text removed for publication] and the Team GB hockey team.
3) This work was also used to engage the public in sports science research both nationally (e.g. Edinburgh and Cheltenham Science Festivals 2010-2013) and internationally (Abu Dhabi Science Festival 2011-2013).