Similar case studies

REF impact found 54 Case Studies

Currently displayed text from case study:

1. Discovery and development of the world’s most powerful antiviral agent against shingles.

Summary of the impact

A new family of antiviral agents, bicyclic nucleoside analogues (BCNAs), discovered in Cardiff University has led to a highly potent anti-VZV (shingles) molecule, FV-100. On a worldwide basis more than two million patients are affected by shingles annually. FV-100 has successfully completed Phase II clinical trials, showing it is safe, potent and effective and with clinical advantages over the current standard of care. FV-100 has received more than $30 million in R&D investment, generating patents and creating highly skilled jobs in the UK and the USA, with the parent company currently valued at $397 million. It will enter registration trials in late 2013.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Medical Microbiology, Pharmacology and Pharmaceutical Sciences

3. Inhaled medicines: Leveraging benefits to global pharma and international development.

Summary of the impact

i2c Pharmaceutical Services is the trading name for a Cardiff University spin-out company based on Cardiff University research excellence and specialising in pharmaceutical inhaler product research and development. i2c's research in formulation technologies and clinical testing has enabled development of new inhalational medicinal products for the healthcare markets in both developed and emerging countries. Impacts arising from research are at local, national and international levels and evidenced by marketed products, the improved business performance of commercial concerns and the creation of highly skilled jobs.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Miltefosine for the treatment of leishmaniasis

Summary of the impact

Miltefosine is the first oral drug to be developed for the treatment of leishmaniasis, a worldwide parasitic infection with up to 12m cases. Also developed as a cancer drug, miltefosine was identified and tested for leishmaniasis therapy at LSHTM and has been added to WHO's essential medicines list as a result of subsequent clinical trials. It has been widely used for the treatment of visceral leishmaniasis (VL) in India, Nepal and Bangladesh, and for the cutaneous form of the disease in Latin America. Phase III and IV clinical trials of combination therapies including miltefosine have been carried out in India.

Submitting Institution

London School of Hygiene & Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Medical Microbiology

Improved drug discovery and development through use of novel iridium catalysts

Summary of the impact

Labelled compounds form an essential part of drug discovery and development within the pharmaceutical industry. Novel iridium catalysts, developed by Kerr at WestCHEM since 2008, have introduced a step-change in the ability to label pharmaceutical candidate compounds with radioactive (tritium) or non-radioactive (deuterium) isotopes.

The catalysts are applicable to specific types of compounds that comprise approximately one-third of all drug candidates. Advantages of the catalysts include greater efficacy (less catalyst needed and higher yield of labelled product, giving cost savings), greater speed (efficiency savings), and a significant decrease in radioactive waste compared with previous methods (environmental and safety benefits).

Even since 2008, their adoption within the pharmaceutical industry has been extremely rapid; e.g., the multinational pharmaceutical company AstraZeneca now applies the Kerr methodology to 90% of their relevant candidate compounds. Additional impact has been achieved by Strem Chemicals who have been manufacturing and marketing the catalysts worldwide since October 2012. Even in that very short period, multiple sales have been made on three continents providing economic benefit to the company.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

3) Treatments and diagnostics for Alzheimer's disease

Summary of the impact

Alzheimer's disease (AD) affects one in seven of the population over 60 years of age, and represents an increasing burden on worldwide medical and care resources. Treatments currently available are symptomatic. Despite pharmaceutical industry efforts there has been little indication of a marketable product for long-term treatment.

To address this problem, a joint venture was established in 2001 between the University of Aberdeen and TauRx Pharmaceuticals. A team was created of chemists, biologists, animal behaviourists, working together with a clinical trial team. A drug effective against the progress of AD based on the compound methylene blue was synthesised and scaled up within the Chemistry Department (led by Professor John Storey), with a quality that was proved acceptable through successful phase two clinical trials (2006-8), and is now used in phase three clinical trials which are due to complete in 2015. Several other drug candidates have also been developed and evaluated in pre-clinical and phase one clinical studies that show promise. Collaborations with commercial pharmaceutical companies have as a result led to the manufacture of significant quantities of drug medicines for TauRx Pharmaceuticals based on IP generated within the Chemistry Department and these drugs have been used in clinical trials and for named patient supply (c. 60 patients). This has resulted in increased commercial revenue for these companies and the creation of new employment.

Submitting Institution

University of Aberdeen

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry

Development of more effective technologies for oral delivery of drugs via improved understanding of the physiological features of the gastrointestinal tract

Summary of the impact

Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Neurosciences, Pharmacology and Pharmaceutical Sciences

Inhaled delivery of life-saving medicines - The Vectura story

Summary of the impact

Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.

Submitting Institution

University of Bath

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Meeting clinical challenges in the UK and sub-Saharan Africa via drug redeployment.

Summary of the impact

The provision of effective and sustainable healthcare is a major challenge for society. In the developed world escalating costs are placing a huge burden on finite resources; in the developing world, where financial resources are often extremely limited, providing affordable healthcare is an even greater problem. One innovative route to help alleviate these problems is through drug redeployment, whereby existing drugs are employed in new ways to tackle serious diseases. Combining their knowledge of haematological disease gained from their research over the past 20 years together with a drug redeployment strategy, researchers in the School of Biosciences have developed and trialled new interventions for two blood cell cancers, Acute Myeloid Leukaemia (AML) and Burkitt's Lymphoma (BL), based on the administration of a combination of the lipid lowering drug Bezalip (Bez) and the female contraceptive Provera (MPA). As a result:

  • Definitive significant outcomes have been demonstrated in terms of halting disease progression and / or diminishing disease load in patients suffering from AML and BL.
  • Successful drug redeployment, on the basis of efficacy, absence of toxicity and low cost of drugs has been achieved.
  • This intervention has created the means to reduce childhood mortality and improve the length and quality of life in areas of sub-Saharan Africa.

Submitting Institution

University of Birmingham

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Oncology and Carcinogenesis, Pharmacology and Pharmaceutical Sciences

UOA01-23: Improving HIV treatment

Summary of the impact

Highly Active Anti-Retroviral Therapy (HAART) is a combination of drugs used to effectively control HIV infection. Since 1987 Nucleoside Reverse Transcriptase Inhibitors (NRTIs) had been used in HAART combinations to specifically target HIV-1 reverse transcriptase, however, resistance and side effects soon prompted the need for an alternative. In 1998, University of Oxford Professors David Stuart and David Stammers provided the first detailed structural framework to facilitate the design of a highly effective alternative class of drug, the Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). NNRTIs have since been developed for clinical use, impacting the pharmaceutical industry and profoundly improving the quality of life of patients.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Medical Microbiology

New anti-inflammatory drug for rheumatoid arthritis

Summary of the impact

The University of Aberdeen's discovery of a novel drug for the treatment of rheumatoid arthritis and related inflammatory/autoimmune disorders has brought substantial industrial investment in research and development. The new drug is expected to enter clinical trials shortly and has the potential to transform the way rheumatoid arthritis is currently treated, as few patients currently have access to the expensive biological agents which dominate existing therapy. Aberdeen has commercialised its research into a university spin-out company and subsequently licensed the programme to a UK drug-development company, Modern Biosciences plc. The research has created and protected UK expertise and jobs.

The specific impacts on commerce have been: substantial industrial investment in research and development, job creation and protection within UK industry, commercialisation of a new product via a licencing deal, and academic consultancy in industry.

Submitting Institution

University of Aberdeen

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Immunology

Filter Impact Case Studies

Download Impact Case Studies