Similar case studies

REF impact found 15 Case Studies

Currently displayed text from case study:

A 60% reduction in diesel use: the impact of optical diagnostics on dual-fuel engines

Summary of the impact

Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Reverse Tapered Hole Drilling for Automotive Fuel Injection Nozzle Manufacture

Summary of the impact

The University of Manchester and Delphi Diesel Systems jointly developed a reverse tapered micro-hole drilling technique, which has resulted in wide commercial applications for the manufacture of fuel injection nozzles in diesel engines and is used by Volkswagen, Ford and Renault in passenger cars and trucks. The technique has resulted in 1.5% fuel saving, 35-40% reduction in particulate matter emission, 20% reduction in NOx emission, 3% reduction in CO2 emission, and allows diesel engines to satisfy the new EU emission legislation Euro 5 in 2008/2009. Delphi's diesel engine component business increased by €0.8 billion/year as a result of the new fuel injection technology.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Reducing CO2 emissions and saving drivers’ fuel costs from the Ford fleet of vehicles

Summary of the impact

Impact on the environment

  • The adoption of cost effective CO2 reduction technologies across a range of Ford vehicles reduced CO2 emissions by an estimated 40,000 tonnes in 2012. This reduction applies pro rata for 2013 and becomes cumulative year on year.

Economic impact

  • Improvements to vehicle engines have saved over €25M in fuel costs to the owners of Ford vehicles in 2012.
  • Research has led to improvements that have been made to Ford products and processes; these improvements have been used to address upcoming legislation on CO2 in a cost effective manner. Future penalties of up to €0.5bn have been avoided by these improved products and processes.

Impact on practitioners

  • Improved monitoring processes, reducing variability in measurement of CO2 from vehicles within Ford by 50%, facilitating the adoption of a range of new fuel saving technologies, which helped to justify a $50M investment in the Ford UK facilities.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Mechanical Engineering, Interdisciplinary Engineering

Project HOTFIRE: Collaborative fundamental research leads to new, downsized, high fuel economy car engine

Summary of the impact

The HOTFIRE collaborative research project (2004-2008) into advanced engine combustion systems led directly to a new, high specific power output, high fuel economy, low CO2 emissions turbocharged `down-sized' three-cylinder engine that was demonstrated in the Opel Astra car in 2008. The valuable new knowledge, understanding and techniques gained in the HOTFIRE project has directly contributed to the successful delivery of a major engine family project for an ASEAN region OEM client of Lotus Engineering.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Collaborative Strategic Partnership with BorgWarner Turbo Systems Ltd

Summary of the impact

University of Huddersfield research into engine technologies has resulted in a major new partnership with the UK arm of engineering multinational BorgWarner, leading to the company increasing R&D capabilities in the UK. This collaboration, funded partly by parent company BorgWarner US and partly by the government's Regional Growth Fund, involves multi-million-pound investment, as well as significant job creation and safeguarding. It was a key factor in the company securing a substantial contract with Jaguar Land Rover, whose decision was informed by the University's capacity to help BorgWarner further its R&D activities and upskill its workforce for the benefit of the UK automotive supply chain and the local and national economy.

Submitting Institution

University of Huddersfield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Fuel cell research powers zero-emission vehicles

Summary of the impact

Research in Proton Exchange Membrane Fuel Cells at Loughborough University (LU) has led to commercial and innovative impacts on a global scale which have included the development of the world's first purpose-built hydrogen fuel cell motorbike, the world's first manned fuel cell aircraft and a zero emission fuel cell hybrid London taxi, with major international companies, such as Suzuki, Boeing and Lotus. These developments have arisen due to the creation of the spin out company Intelligent Energy (IE). The company currently employs some 350 personnel, has a total shareholder investment over £100M and was valued at $0.5B in 2012.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Materials Engineering

Energy saving from improved fuels, engine combustion, and reduced hazards.

Summary of the impact

Experimental research and computer modelling in the School of Mechanical Engineering have been applied by engine and oil companies to reduce fuel consumption and noxious emissions. Studies into high pressure explosions and burn rates have helped industry improve engine efficiencies by up to 30% and contributed to the development of much improved fuels. These new products perform better, are less environmentally damaging and have generated new company revenues. Research into burn rates, detonations, and large jet-flames has also informed health and safety investigations, particularly the UK Government Inquiry into the Buncefield explosion, providing calculations and explanations of the blast, and recommendations on future safety controls.

Submitting Institution

University of Leeds

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Interdisciplinary Engineering

Enhancing the Driver Experience in Automobiles

Summary of the impact

The research addressed the problem of improving the driver experience of the sound and vibration of their automobile operating under idle conditions in city traffic. As a result of the research, Shell Global Solutions UK developed and successfully adopted a test standard protocol that changed their R&D process for making diesel fuels. The research shifted the process of making fuels from one which were oriented to the product to one that was customer focused. The new test standard protocol and the vibration acceptability metric were also adopted by Ford Motor Company Ltd., Bentley Motors, BMW, Fiat, Ferrari, Jaguar Land Rover, Peugeot-Citroen and Renault.

Submitting Institution

Brunel University

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Interdisciplinary Engineering
Medical and Health Sciences: Neurosciences

Regenerative Engine Braking Device for Buses and Other Commercial Vehicles

Summary of the impact

Prof Zhao's development of an innovative hybrid engine RegenEBD was exploited by its industrial partner, Guangxi Yuchai Machinery Company (Yuchai), the largest bus engine manufacturer in China holding 80% of the domestic market. The first RegenEBD engine buses were operated in Yulin city, where Yuchai is based, in 2011. Yuchai confirmed that these buses have demonstrated notable fuel savings of 4.7-10% (1,100-2,200 litres of fuel saving), equivalent to 3.6-7.2 tonnes of carbon saving per vehicle per year. This led Yuchai to re-align their manufacturing strategies and development efforts for 3 years (2011-2013), investing significant resources to begin manufacturing and retrofitting of RegenEBD engines in 2014. They have employed over 30 new engineers to develop and manufacture RegenEBD and purchased equipment for RegenEBD engine testing and operations. Yuchai expects that hundreds of buses equipped with RegenEBD will be on the road by 2020.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Mechanical Engineering, Interdisciplinary Engineering

Engine Test Bed Experimental Data Modelling and Optimisation

Summary of the impact

This research project, carried out at the University of Derby, was used to develop an engine performance monitoring system and a data optimisation method for engine management systems for Land Rover. The project delivered two pieces of software developed for data modelling and optimisation with respect to the engine test bed. This has significantly reduced the engine test time on the test bed by up to 30%, reduced the cost of each engine test and provided optimum engine operation parameters to the Engine Control Unit (ECU), which has resulted in lower emissions and improved fuel economy. The project was started in 2000 and completed in 2008. However the outcomes of the research and developed software tools are still used by the Land Rover engine test group.

Submitting Institution

University of Derby

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Mechanical Engineering, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies