Log in
DICHROWEB is a comprehensive, user-friendly server that provides access to computational tools for the determination of protein secondary structure from data obtained through circular dichroism (CD) and synchrotron radiation (SRCD) spectroscopy. The Protein Circular Dichroism Data Bank (PCDDB) is a database of spectra obtained using these techniques and allied data. Both resources are widely and increasingly used in many countries and are proving useful in industrial research (for example, in drug discovery) as well as academia and advanced teaching. DICHROWEB currently has over 3,600 registered users and over 375,000 DICHROWEB analyses have been run. Since the launch of PCDDB in 2009, the database has had over 175,000 unique hits from 41 different countries, and 89,890 downloads.
The CATH classification of protein structure, developed at the Institute of Structural and Molecular Biology, UCL, by Janet Thornton and Christine Orengo, has been used widely across the pharmaceutical industry and academia to guide experiments on proteins. This has led to significant cost and time savings in drug discovery. The UCL-hosted online CATH database receives around 10,000 unique visitors per month, and is a partner in InterPro — the most frequently accessed protein function annotation server available.
Research at the University of Oxford's Glycobiology Institute (OGBI) has led to the development of `state-of-the-art' platform technologies for the analysis of oligosaccharides (sugars) that are linked to proteins and lipids. These enabling technologies have had major impacts worldwide on drug discovery programmes, have enabled robust procedures to be developed for the quality control of biopharmaceutical production, and have been widely adopted by the pharmaceutical industry.
A computer technology has been invented to accelerate drug discovery. It predicts locations in disease-associated biomolecules where drug molecules could bind, induce shape changes, and thereby bring the activity of the biomolecule under control. A U.S. drug discovery company, Serometrix, has exclusively licensed this technology and incorporated it within their core discovery process. The impact upon them has been:
Research carried out at Birkbeck's Department of Computer Science and Information Systems since 2000 has produced techniques for the management and integration of complex, heterogeneous life sciences data not previously possible with large-scale life sciences data repositories. The research has involved members of the department and researchers from the European Bioinformatics Institute (EBI) and University College London (UCL) and has led to the creation of several resources providing information about genes and proteins. These resources include the BioMap data warehouse, which integrated the CATH database — holding a classification of proteins into families according to their structure, the Gene3D database — holding information about protein sequences, and other related information on protein families, structures and the functions of proteins such as enzymes. These resources are heavily utilised by companies worldwide to explore relationships between protein structure and protein function and to aid in drug design.
Combinatorial Domain Hunting (CDH) technology is a technique for producing fragments of proteins that are soluble and tractable for biophysical analysis. It was developed between 1999 and 2008 at Birkbeck College, in the laboratory of Dr Renos Savva. This technology was patented in 2001 and the biotech company Domainex Ltd was then formed to commercialise it. In 2007, Domainex merged with a UCL spinout company, NCE Discovery Ltd. The company has attracted over £3m in investment and employs about 31 people. In addition to its contract research programme, it has developed an in-house drug discovery programme utilising CDH. Early in 2012 a patent was filed on a series of inhibitors of the protein kinases IKK03b5 and TBK1, which are validated drug targets for cancer and inflammation, and the first of these are expected to begin clinical trials in 2014.
Protein modification represents a highly significant and growing source of new products for the biopharmaceuticals market. This case study outlines the development of PolyTherics, a highly successful spin-out company from the UCL School of Pharmacy, and the impact that their enabling technology has had on the pharmaceutical and biotechnology industries. The company was developed as a direct result of new conjugate technology developed by Professor Steve Brocchini and coworkers at the School. The company moved to independent premises in 2006 and now manages a portfolio of over 100 granted and pending patents. Several licensing agreements are in place, including with Celtic Pharma Holdings for haemophilia treatments and Nuron for a multiple sclerosis treatment based on PEGylation conjugation technology. Revenue is expected to be £8m in 2013. The impact of Polytherics is therefore as a significant and effective technology provider to the pharmaceutical and biotechnology industries.
Research carried out within Imperial's Life Sciences department led to a collection of new kit solutions to screen the crystallisation conditions of various membrane proteins. These screens were exclusively commercialized by Molecular Dimensions, a UK company, in 2002, 2003 and 2008 under license from Imperial College London. They are the primary screening kit in membrane protein crystallization that is commercially available. These screens have helped to screen the crystallization conditions of a wide range of membrane proteins, leading to many new structures. Molecular Dimensions has sold [text removed for publication] screens, worth more than [text removed for publication], to both academia and industry all over the world.
The protein research of Imperial's Mass Spectrometry group led to the development of Mass Mapping /Fingerprinting for rapid protein characterisation, and new methods for disulphide bridge and glycosylation assignment. Commercialising these discoveries, the company M-SCAN has developed methods to accelerate industrial research and commercialisation of the next generation of recombinant drug therapies, such as monoclonal antibodies targeting cancers. M-SCAN is the pioneer of Biopharmaceutical Characterisation. It has influenced the regulatory advice and, in the past ten years, has assisted many hundreds of companies worldwide in developing their products for market, leading to the growth of a profitable business. In 2010, SGS S.A., a multinational company that provides inspection, verification, testing and certification services, acquired M-SCAN for an undisclosed sum, satisfying SGS's vision to become one of the top players within the Biologics testing arena.
Serum amyloid P, or pentraxin-2, is a pentameric calcium-binding protein that binds to amyloid fibrils. It has been implicated in the protection of those fibrils from proteolytic digestion and in the immune response to tissue damage. The structure of pentraxin-2 was first solved by Steve Wood and his co-workers in Tom Blundell's lab at Birkbeck in the 1990s. Wood has continued his work on the pentraxins at UCL, and the company Pentraxin Therapeutics Ltd was spun out of UCL to design and develop pentraxin-binding ligands (based on its structure) as potential treatments for Alzheimer's disease and amyloidosis. Promedior Inc. in the US is developing recombinant forms of pentraxin to control fibrosis. Several of these molecules are now in clinical trials.