Log in
Research at the University of Southampton, into the engineering of complex socio-technical systems, has underpinned new technologies in the area of intelligent energy management, and made Professors Nick Jennings and Alex Rogers trusted sources of advice for energy policymakers, key stakeholders and industrial researchers. The work has had an economic, environmental and societal impact: it has shaped R&D strategies of leading British companies like BAE Systems and Secure Meters; the launch of iPhone apps and websites have supplied private and industrial users with personalised data regarding their energy use, resulting in cost savings and reductions in carbon emissions; it has enabled charities to provide energy-saving advice to households directly; and has won an international technology showcase competition leading to a spinout and commercialisation of research.
The demand for biofuels and alternative energies is increasing globally as a sustainable source of energy is sought for the future. Energy from crops is no longer a viable option due to the increase in wheat prices. Scientists at the BEST Research Institute have managed to bridge the gap by using novel and unique microwave systems for converting waste (biomass, food, animal) into energy. Our advances in this area have generated considerable interest from both national (e.g., United Utilities PLC, Balfour Beatty PLC, Biofuels Wales Ltd, Stopford Projects Ltd, Longma Clean Energy Ltd) and international (e.g., RIKEN-Japan, Fraunhofer-Germany, Sairem-France, Acondaqua-Spain, Ashleigh Farms-Ireland) companies. This has resulted in several collaborative, funded projects leading to industrial adoption of our microwave technologies.
Dr David Toke's research at the University of Birmingham has contributed to policy made by governments in the UK and EU, and the work and policy of environmentally concerned NGOs. Renewable Energy is a crucial aspect of EU and UK sustainable energy strategies and feed-in tariffs have now become the preferred method of incentivising renewable energy in the UK. Toke made a major contribution to generating this change through his proactive dissemination of research on feed-in tariffs and the publication of a key public policy report, at a time when little was known about this type of policy instrument.
His research has stimulated debate among industry professionals and events organised by him have provided a forum where the industry and NGOs can develop an evidence-based dialogue. Through using popular media to disseminate his research findings, Toke has provided a source for greater public understanding of the related issues, and in particular has challenged the decisions of government. In a broader sense, his research has contributed to improving governmental and financial support for renewable energies in the UK and thus environmental sustainability.
This case study describes the national and international impact of research undertaken by Professor Chao, as part of an EU funded Framework 7 project, Digital Environment Home Energy Management Systems (DEHEMS). The project has improved existing household energy monitoring, tackling the issues of global warming and CO2 emission reduction in the domestic sector. The research has directly contributed to the development of a product called EnergyHive, subsequently marketed by Small to Medium-sized Enterprise (SME) Hildebrand Ltd, who was the industrial partner in the DEHEMS consortium. The research has delivered the following:
Beneficiaries of the research and the subsequent impact include: a commercial business, domestic energy consumers, UK and international energy companies and local authorities.
The University of Southampton's pioneering research into energy harvesting has produced proven economic impacts together with impacts on public policy and international standards. Perpetuum, a spin-out from Southampton employing 10 people locally, has attracted £9.6 million in venture capital and developed the world's leading vibration energy harvester. Perpetuum's harvesters are enabling the deployment of zero maintenance, battery-free wireless systems in the rail industry where the technology has revolutionised bearing monitoring. This has enabled, for the first time, real-time monitoring of rolling stock, leading to cost savings, improved reliability, efficiency and safety. Their systems have been deployed on 200 trains across the UK (Southeastern) and Sweden (SJ AB). Southampton's research has driven wider industrial uptake of the technology and Perpetuum's is also the only energy harvester approved for use with the worlds leading suppliers of wireless condition monitoring equipment (GE Bentley Nevada, National Instruments and Emerson). Promotion of the technology has led to a £1.25 million TSB competition on energy harvesting and Southampton researchers are assisting in the development of international standards and increasing public awareness of the technology.
A development of six Creative Energy Homes (CEH) on the University of Nottingham campus provides a living test-site for leading firms, including E.ON, David Wilson Homes, BASF, Tarmac, Roger Bullivant and Igloo Blueprint to work with the University of Nottingham to investigate the integration of energy efficient technologies into houses. As a result of this work, Lovell homes has won a number of sustainable housing contracts, Roger Bullivant have developed and installed 30 SystemFirst™ foundation systems and Igloo Blueprint have built £7M worth of new homes. The research findings have informed the UK Government's "Green Deal" strategy, the Nottingham Community Climate Change Strategy and received widespread acclaim through a number of public engagement activities reaching out to over 5 million people.
The work described here has impacted on European policy and standards concerning energy efficiency in Building Services.
The impact arises from two Welsh School of Architecture led and European Commission funded projects, HARMONAC (focussed on inspection of air-conditioning systems) and iSERV (focussed on automatic system monitoring and feedback). These pan-European projects demonstrate achieved energy savings of up to 33% of total building electricity use in individual buildings, and potential savings up to €60Bn. These projects demonstrably impacted the recast European Energy Performance of Buildings Directive (EPBD) and the revision of EU Standards (European Committee for Standardisation (CEN)).
The impact is in the ERPE design of protocols which are subsequently used for evaluation and comparison of the performance of tidal energy converter designs. Researchers within the UK Centre for Marine Energy Research (UKCMER) at ERPE have led much of the fundamental and applied research that has supported the commercialisation of tidal energy technologies through the establishment of new international test standards and protocols.
ERPE researchers have regularly provided evidence which has influenced policy change in marine energy development in the UK and internationally with many ERPE graduating PhD's, subsequently employed in the marine energy sector.
Professor Gupta, an internationally recognised expert on architecture and climate change, has developed an innovative software model for carbon counting (DECoRuM® model) and climate change adaptation (DECoRuM® adapt) of existing housing. The combination of Geographic Information System techniques, energy efficiency and climate change adaptation measures has enabled DECoRuM® model to provide a range of environmental, public policy and practice benefits to homeowners, communities, local authorities and architects. These benefits have been realised through refined global common carbon metrics promoted by UNEP, BSI standard and industry guidance, as well as achievement of real energy and CO2 emission reductions from low carbon refurbishment, leading to improved building energy performance.
Since 2007, Edinburgh researchers have played an important role in increasing the use of local, context-specific knowledge in the assessment of technological sustainability and efficiency in the bioenergy and solar sectors in East Africa and South Asia. This has taken the following forms: