Log in
The Boutelle team has developed a biosensor that uses rapid-sampling microdialysis (rsMD) to detect ischaemia (restricted blood supply to tissue) during surgery and intensive care. The rsMD biosensor is implanted into tissue at risk and provides a real-time readout of chemical markers of metabolism. By 2009, technical improvements researched in the Department of Bioengineering had made the system suitable for routine clinical use. The system has reduced morbidity and mortality by alerting the surgical team to otherwise undetected ischaemia. It has been used by an international consortium of clinical centres to help decide treatment in approximately 100 patients with brain injury. More recently it was adopted by a Portsmouth hospital to monitor cancer patients undergoing reconstruction of the face and jaw; the biosensor detected a failure of perfusion in transplanted tissue in two of the first ten patients, prompting the surgical team to remove otherwise undetected blood clots that could have led to death from septicaemia.
Research into electrochemical biosensors conducted at the University of Cambridge between 1998 and 2002 led to the development of the WaveSense™ line of diabetes products by start-up, AgaMatrix. By 2012 AgaMatrix had sold 3M glucose meters & 3B biosensor test strips worldwide across 20,000+ retail locations including Boots UK, and since 2010 also globally in partnership with Sanofi. [text removed for publication] AgaMatrix UK continues to grow its business with compound annual growth rates for revenue in excess of 100%. Agamatrix UK now supplies over one million glucose test strips per month to the NHS. Agamatrix has developed >10 FDA-cleared products since 2008, including the first FDA approved smartphone linked diagnostic device.
Research at the University of Liverpool (UoL) has developed and proven a straightforward diagnostic test method for bacterial blood infections. This was urgently needed as sepsis is a medical emergency that lacks adequate and rapid diagnostic tests particularly for low cost early detection. UoL's research has demonstrated that a simple optical test that can be conducted during routine testing of coagulation is an effective diagnostic, prognostic and monitoring marker for sepsis that can be routinely applied in clinical settings. There are now established UK and international laboratory standards in place. In 2010 a spinout company was formed to exploit four patents and incorporate the technology into a point-of-care device suitable for all clinical settings. The company, Sepsis Ltd, has attracted £1.45m of investment.
Measurement of hormones is essential to the understanding and diagnosis of endocrine diseases. White and her research group have developed unique antibodies that are widely used in diagnostic assays for adrenocorticotrophic hormone (ACTH) and related peptides, including the first and only kit for measuring pro-opiomelanocortin (POMC), the precursor of ACTH. These assays are used worldwide for diagnosis, decisions on treatment, monitoring for recurrence of tumours and prognosis in a number of patient groups with life-threatening endocrine disorders. Global sales of the ACTH Elecsys tests by Roche exceeded 6 million kits since 2008. AstraZeneca has used the POMC and ACTH assays in its drug discovery programmes in the cardiovascular and metabolic diseases therapy area. The antibodies therefore have had health impact in relieving suffering and in improving patient care, as well as commercial impact in worldwide sales of assays and influencing drug development strategies.
Analytical methods and nanotechnology developed and patented since 1994 by the University of Sunderland, for healthcare, forensic and environmental monitoring applications have been exploited for their commercial and healthcare benefits. The patents were out-licensed to a University spin-out company for the production of a `sniffer' device to detect raw material air contamination in a manufacturing environment. The proof of concept project resulted in significant commercial benefits, such as inward investment, new industry, specialist training, and >20 new jobs for a range of skilled workers, both in the UK and overseas, development of health and welfare protection, exploitation of technology to meet new industry regulations, and improved efficiency in the manufacture of active pharmaceutical ingredients and products for household goods.
The MRC Prion Unit was established at UCL in 1998 to address national public health issues posed by bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD). One of our key strategic priorities has been to create a validated blood test for vCJD in order to protect public health through the screening of donated blood and organs for transplantation. The blood test we have developed has been demonstrated to detect infection in over 70% of patients with vCJD with, to date, 100% specificity and is now in use at the National Prion Clinic for evaluation.
The FLAIR (Fluid Attenuated Inversion Recovery) MRI sequence developed at Imperial College has transformed the sensitivity of clinical neuroimaging for white matter brain lesions. FLAIR has had significant commercial impact with incorporation as a standard imaging sequence offered by all manufacturers on their MRI scanners. The inclusion of FLAIR in routine diagnostic MRI protocols in radiology centres worldwide provides evidence of the continued extensive reach of impact for better healthcare outcomes through improved diagnosis and management. The use of FLAIR has led to more powerful Phase II trial designs for development of medicine for stroke, neuroinflammatory disorders, epilepsy and neuro-oncology based on imaging outcomes.
Fifteen years of research in advanced Lab-on-a-Chip technologies at the University of Glasgow has led to three spin-out companies: Mode-Dx, Clyde Biosciences and SAW-Dx. Since 2008 these companies have developed a range of products and services for the diagnostic screening of chronic diseases, for the detection of acute infections and for improving the drug discovery process. The three companies have secured a total of £2.3M in venture funding and secured key strategic collaborations with stakeholders including industry partners and the NHS.
Diabetes research at University of Ulster (Ulster) addresses the unmet need of industry for new and more effective commercially applicable approaches for diabetes therapy. We have generated a new class of innovative peptide therapeutics resulting in a strong portfolio of intellectual property, significant international recognition, financial investment and job creation, with commercialisation through Ulster's technology transfer company, Innovation Ulster (IUL), and the Ulster start-up company, Diabetica Ltd. Our substantial interactions with industry have resulted in the licensing and further development of our international patents on stable incretin peptides for diabetes and, through our discovery of their positive effects on cognition, for treatment of Alzheimer's disease. This work has provided industry with new and commercially viable approaches to significantly improve the lives of people with diabetes and related neurodegenerative disease.
Based on his research at the UCL Institute of Cognitive Neuroscience, Professor Paul Burgess invented and co-invented several cognitive tests (known as the Hayling and Brixton Tests, and the BADS and BADS-C assessment batteries) which are used to detect dysfunction of the frontal lobes of the brain. These were developed for commercial production by Burgess and are now produced and marketed by the largest test publisher in the world (Pearson Assessment). There are versions in several different languages, and they are used in clinics worldwide to diagnose problems in a wide variety of patients with neurological, psychiatric and developmental problems. The tests are now administered around the world to around 55,000 patients per year.