Log in
Impact on commerce: A patented technique for separating methylated and non-methylated DNA has been licensed and a kit brought to market, along with other commercial reagent licenses.
Impact on health and welfare: The demonstration that two mechanisms of epigenetic gene regulation, DNA methylation and histone acetylation, are linked, has led to trials of separate drugs known to affect each mechanism as a combined treatment for high-risk patients with myelodysplastic syndromes (MDS).
Beneficiaries: Companies have gained commercial benefit from licensing UoE IP to market products. High-risk MDS patients will benefit from improved treatment.
Significance and Reach: Commercial earnings across 4 companies from international sales in the period estimated at over [text removed for publication], mainly since 2010. Commercial significance includes the first commercially-available technique for separating methylated and non-methylated DNA.
The incidence of MDS is estimated at 3-4 cases diagnosed annually per 100,000 of the population in Europe (an estimated 26,000 individuals) and up to 20,000 new diagnoses per year in the USA. Incidence increases with age — up to 15 new cases annually per 100,000 in individuals aged over 70 years. MDS occurrence is increasing as the age of the population increases, so the significance of new therapies is high.
Attribution: All research was led by Adrian Bird at UoE. Reik (Babraham Institute) contributed to development of one of the licensed antibodies.
Impact: Health and welfare; policy and guidelines; public engagement. The identification of >20 genes linked to human developmental and childhood degenerative disorders.
Significance: Definitive diagnosis is essential for genetic counselling, prenatal screening and postnatal management.
Beneficiaries: People with developmental disorders and their families, prospective parents, the NHS and healthcare delivery organisations; public understanding of genetic disorders.
Attribution: Researchers from UoE identified/characterised all the genes described, and their mutation in disease.
Reach: Worldwide: these developmental disorders affect thousands of people. Genetic tests established as a result of the research are provided for people from 35 countries on all continents.
Professor Dickson's research group at Royal Holloway has pioneered the enabling technologies for the development of genetic therapies for the incurable disease Duchenne Muscular Dystrophy (DMD). Dickson's group has, (i) cloned replacement copies of the normal DMD gene, (ii) identified a natural substitute for the defective gene, and (iii) demonstrated that synthetic DNA can be used to correct the defective gene. The work has created impact on health and welfare through the development and clinical trials of a series of investigational medicinal products for this hitherto incurable disease, several clinical trials, and impact on commerce through industrial investment and licensed patents.
The Basidio Molecular Toolkit developed at the University of Bristol has enabled the pharmaceutical industry to achieve the efficient genetic manipulation of a group of basidiomycete fungi (mushrooms and toadstools) and thereby produce medically important antibiotics and proteins cost-effectively. For example, GlaxoSmithKline's collaboration with the Bristol team saved 70,000 hours of research and development in getting a natural antibiotic called pleuromutilin to market. In China, the system is used to produce medicinal anti-cancer proteins from fungi in commercially viable quantities. In addition, government agricultural research programmes in the US and Ireland have adopted the toolkit to increase the efficiency of their search for disease-resistant crops in the interests of farmers, consumers and economies.
Individuals with Xeroderma pigmentosum (XP) are extremely susceptible to sunlight-induced skin cancers and, in some cases, develop neurological problems. Alan Lehmann has developed a cellular diagnostic test for this disorder. This test is now conducted as an integral part of a multi-disciplinary XP specialist clinic in London, which was established as a direct result of Alan Lehmann's research in Sussex and which has led to the improved diagnosis and management of the disorder and an improved quality of life for affected individuals.
Diagnostic tests have been successfully developed for identification of the cause of erythrocytosis, particularly in patients with unexplained forms of this rare disease. A diagnostic service with worldwide reach was developed for the genetic characterisation of patients that carry mutations identified by the Queens's group. It deals with approximately 100 samples per year referred for investigation for this rare disease from the UK, Europe and further afield. Proper diagnosis helps in management of patients with erythrocytosis where the problem is not mutation in one of the familiar causative genes. A pan-European web-based database has been established to collect information on long-term outcomes to inform patient management.
Ataxia telangiectasia (A-T) is an inherited disease affecting multiple systems in the body, causing severe disability and death. Work led by Professor Malcolm Taylor at the University of Birmingham has been central to the biological and clinical understanding of this disease, from the identification of the gene responsible to the clarification of related conditions with different underlying causes. As a result of this work, within the 2008-13 period, his laboratory has been designated the national laboratory for clinical diagnosis of A-T — a service also offered internationally — and has also changed national screening policy for breast cancer, following his confirmation of the increased risks of A-T patients and those who carry a single copy of the gene for this type of tumour. Furthermore, he has contributed in a major way to patient support for this condition.
Research at the UCL Institute of Ophthalmology over the last 20 years has resulted in the identification of a large number of novel genes that cause inherited retinal disease. These genes have been incorporated into diagnostic tests, which have allowed molecular diagnosis, improved genetic counselling including pre-natal/pre-implantation diagnosis, better information about prognosis and have informed decisions about which diseases should be prioritised for clinical trials of novel treatments. The identification of these genes has greatly improved understanding of disease mechanisms, an essential prerequisite for developing new treatment approaches such as gene therapy.
Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of genetic diseases that affect the development of the skeleton. Although individually rare, as a group of related genetic diseases they have an overall prevalence of at least 1 per 4,000 children, which extrapolates to a minimum of 225,000 people in the European Union. This burden in pain and disability leads to poor quality of life and high healthcare costs. GSDs are difficult diseases to diagnose and there are currently no treatments, therefore, arriving at a confirmed diagnosis is vital for clinical management, psycho-social support and genetic counselling.
Research conducted at the University of Manchester (UoM) has had a major influence on establishing the correct diagnosis of specific GSDs by the discovery of causative genes and mutations and the subsequent development of accurate and reliable DNA testing protocols. This has significantly improved both accuracy of, and access to, genetic testing in the UK, Europe and worldwide.
The Caldecott/Jeggo/O'Driscoll laboratories have identified human genetic diseases that are caused by defects in genes involved in DNA strand-break repair. Many of these diseases are associated with neurological pathologies such as cerebellar ataxia (resulting in poor balance, movement control, and patients often being wheelchair bound), microcephaly (smaller-than-normal head circumference), and developmental delay. The Caldecott/Jeggo/O'Driscoll laboratories have engaged in identifying/diagnosing patients with such diseases as a service to clinicians/clinical geneticists in the UK National Health Service (NHS) and worldwide. Since 2008, these laboratories have identified the underlying genetic defect in more than 150 patients with a range of hereditary DNA damage-related disorders. In particular, these laboratories have diagnosed patients with genetic defects in the DNA damage response genes Lig4, NHEJ1-XLF, DCLRE1C-Artemis, PRKDC-DNA-PKcs, PCNT, ORC1, ATRIP, ATR, and TDP2. These diagnoses benefit both the clinical geneticist and the patient; identifying not only the cause of the patient's disease but also enabling better disease management. For example, if not first diagnosed, standard chemotherapeutic regimes can be fatal in cancer patients who harbour homozygous TDP2 mutations, and standard conditioning regimes used during bone-marrow transplantation can be fatal in LIG4 Syndrome patients. These diagnoses can therefore translate into increased patient survival.