Log in
Impact: Public engagement and education, influence on public ethical and scientific policy.
Significance: The first demonstration of cloning from an adult mammalian somatic cell has stimulated rolling religious, ethical, cultural, political and scientific debates. Dolly has become a scientific icon entering the public and educational lexicons in addition to scientific ones.
Beneficiaries: Human society, culture, education.
Attribution: Wilmut and colleagues (Roslin Institute, UoE), undertook somatic cell nuclear transfer and used it to perform the first successful cloning of an adult mammal.
Reach: Worldwide: Dolly became a scientific icon that is recognisable all around the world, representing a major public engagement with bioscience. For example; cloning principles are part of high school education including the International Baccalaureate (implemented in >3600 schools on five continents).
Impact on society, culture and creativity; health and welfare; practitioners: Extensive public engagement with a broad target audience has increased understanding of the hopes and hypes generated by stem cell research at UoE and elsewhere, and has provided resources for practitioners to deliver high-quality public engagement and science education.
Beneficiaries: Educators, teacher trainers, science communicators, journalists; patients; students; officials in the European Commission, the European Parliament and by extension constituents.
Significance and Reach: This programme has promoted informed decision-making among non-specialists and public acceptance of stem cell-based research and future therapies in Europe (compared for instance to the USA). The project is focused on Europe, but participation is world-wide. 767,000 unique visitors have accessed the www.eurostemcell.org website. The educational tools have been used by 11,000 pupils, and engaged 20,100 participants at festivals and science centres. More than 740,000 individuals world-wide have viewed the films (>240,000 confirmed online, film showings and DVD; estimated >500,000 TV audience).
Attribution: The programme reflects a range of stem cell research, substantially based on underpinning research carried out at UoE led by Professors Austin Smith and Ian Chambers. The outreach programme is led by Professor Clare Blackburn. Leadership, management, content identification, content format, editorial input, and evaluation of the outreach programme are all led at the University of Edinburgh.
Impact on commerce: Five stem cell culture products derived from UoE research have been brought to a global market since 2009 through the US based company StemCells Inc. StemCells Inc strategically acquired Stem Cell Sciences plc (SCS), with its licensed portfolio of UoE patents, to position themselves as a world leader in cell-based medicine. This enabled them to develop media and reagent tools in order to pursue nearer-term commercial opportunities. These products include the gold standard media for embryonic stem cell culture, iSTEM.
Beneficiaries: Commercial companies and users of the stem cell culture products.
Significance and Reach: iSTEM is the gold standard media used worldwide by researchers for maintaining mouse ES cells in their basal, non-differentiated state. Products are sold worldwide through global life sciences companies.
Attribution: All research was carried out at UoE between 1994 and 2006 (published up to 2008), led by Prof Austin Smith. Collaboration with Prof Philip Cohen, University of Dundee, on one paper (2008).
Mouse disease models provide an invaluable tool to the medical sciences, underpinning the understanding of disease mechanisms and the development of therapeutic interventions. A new cultivation protocol for deriving mouse embryonic stem (ES) cells was developed by Dr Nichols between 2006 and 2009. This has facilitated the production of ES cells from disease model mice that can be manipulated in vitro and used to establish modified transgenic mice with the required genetic profile, in a single generation. This method reduces the number of mice needed, as well as associated costs and staff time, by 90%. Dr Nichols has trained industry delegates from international transgenics companies and transgenic facility managers in the new technology. As a consequence, a minimum of 26820 fewer mice have been used in experiments, and a minimum of £536k have been saved since 2009.
Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were generated in Sheffield by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for £0.75M in 2009. As a result, a clinical grade derivative of SHEF-1 has been developed and approved for clinical trials for treating age-related macular degeneration (AMD). In addition, Sheffield research has led to the licensing and sales of key hESC marker antibodies for stem-cell quality control. Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports and providing evidence to a Parliamentary committee. The case study has significant impact on commerce, health and welfare and public policy.
Impact on the economy and on commerce Using novel technology developed with UoE researchers to isolate and culture cambial meristematic cells (CMCs), Korean biotech company Unhwa Corp tripled their production of CMCs and have brought sixteen skincare products and three nutritional products to a global market. The impact of this technology on the South Korean economy has been recognised by the Korea Ministry of Knowledge Economy.
Beneficiaries: Korean Biotech company Unhwa Corp, and international consumers of their nutrition and cosmetic products.
Significance and Reach: The technology provides a platform for the cost-effective, environ- mentally friendly and sustainable production of plant stem cells. The business strategy and operations of Unhwa Corp changed as a direct result of the research: Unhwa invested [text removed for publication] in 2011-13 to construct a base in Jeojuni, Korea for a new production facility. Products arising from this are sold world-wide (Unhwa has subsidiaries on 5 continents) and have generated [text removed for publication] profit, with a doubling of company turnover since the key research was carried out.
Attribution: Professor Gary Loake, UoE, led the research in collaboration with Unhwa Corp, from 2006 to 2010 and ongoing.
Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were developed by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for $0.75M in 2009. As a result, a clinical grade derivative of SHEF1 has been developed and approved for clinical trials for treating Age Related Macular Degeneration (AMD). Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports for government and research councils.
Research by Professor Parmjit Jat (first at the Ludwig Institute for Cancer Research, then part of UCL; later at the UCL Institute of Neurology) established and applied the critically important scientific concept of conditional immortalisation to a wide variety of cell lines, enabling cells to be grown indefinitely in vitro but differentiate upon altering the growth conditions. Two companies were established in partnership with Jat to exploit this research, ReNeuron (now worth £63.5m and publicly traded on the London AIM market) and XCellSyz (now part of Lonza AG). More than 20 patents based on Professor Jat's work have been issued. Reagents based on his research have been evaluated, licensed and used by 17 companies worldwide: Amgen, Amylin, Boehringer Mannheim, Cell Genesys, Chiron, Eli Lilly, Genentech Inc., Genetics Institute, Immunex, Johnson & Johnson, Medarex, Novartis, Ortho Pharm., Pfizer Inc., Regeneron, ReNeuron, Takeda, EMD Serono, and XCellSyZ/Cambrex Bioscience/Lonza.
Seven patients with avascular necrosis of the femoral head and bone cysts have been treated successfully with skeletal stem cell therapy, developed by Southampton researchers, resulting in an improved quality of life. This unique multi-disciplinary approach linking nano-bioengineering and stem cell research could revolutionise treatment for the 4,000 patients requiring surgery each year in the UK and reduce a huge financial burden on the NHS. The work has been granted three patents and the team are in discussions on development of the next generation of orthopaedic implants with industry.
Neural stem cells offer enormous therapeutic potential for stroke but they require regulatory approval. Researchers at King's College London (KCL) devised a technology to immortalise stem cells, generated clinical-grade neural stem cell lines and demonstrated efficacy in an animal model of stroke. KCL research underpins the first approvals in the UK for a therapeutic stem cell product. This led to an industry-sponsored clinical trial of a stem cell therapeutic that has demonstrated vital improvement in all the first five stroke patients treated. KCL research has made a significant impact by considerably reducing the timetable for delivering potential therapies which will affect the life sciences industry and the process now in place acts as a model for other technology developments in this area.