Log in
The University of Southampton's pioneering research into energy harvesting has produced proven economic impacts together with impacts on public policy and international standards. Perpetuum, a spin-out from Southampton employing 10 people locally, has attracted £9.6 million in venture capital and developed the world's leading vibration energy harvester. Perpetuum's harvesters are enabling the deployment of zero maintenance, battery-free wireless systems in the rail industry where the technology has revolutionised bearing monitoring. This has enabled, for the first time, real-time monitoring of rolling stock, leading to cost savings, improved reliability, efficiency and safety. Their systems have been deployed on 200 trains across the UK (Southeastern) and Sweden (SJ AB). Southampton's research has driven wider industrial uptake of the technology and Perpetuum's is also the only energy harvester approved for use with the worlds leading suppliers of wireless condition monitoring equipment (GE Bentley Nevada, National Instruments and Emerson). Promotion of the technology has led to a £1.25 million TSB competition on energy harvesting and Southampton researchers are assisting in the development of international standards and increasing public awareness of the technology.
We have developed an energy harvesting technology that extracts energy from ambient radio signals which is used to power or charge low power electronic devices. The key impact from this work is raising the public, media and business awareness and interest in our technology. This has included a BBC Technology clip featuring our technology, several national and local radio interviews and coverage on numerous websites and newspapers around the world. Although this technology has not yet been commercialised (a target application is powering smart meters), it has already had a significant impact and reach in public and commercial debate and an enhancement in the public understanding of science.
This case study concerns the long term (energy) sustainability of emerging winemaking regions. Underpinning research in energy efficiency and renewable technologies informs the case study in determining energy usage and benchmarks, development of energy guidelines/policy, implementation by national professional bodies and adoption of energy best practice by the local industry. Impact is through the adoption and application of benchmarks by winemaking associations, directly influencing (through policy, regulations and standards) the energy expended in making wine. The study is underpinned by international publishing accolades (Solar Energy `Best Full Length Paper in Photovoltaics', Mondol et al, 2005) and a highly prestigious personal Royal Academy of Engineering Global Research Award to Smyth.
Research by staff of the Energy Systems Research Unit (ESRU) at Strathclyde has resulted in advances in the state-of-the-art in dynamic building energy modelling as encapsulated within the Open Source ESP-r program. This new capability enabled practitioners to analyse phenomena and technologies hitherto not capable of being modelled in building simulation tools. The impact stems from the embedding of ESP-r within companies resulting in service improvement and job creation, and applications of ESP-r resulting in energy demand reduction, low carbon energy systems integration and environmental impact mitigation.
Research at the University of Southampton, into the engineering of complex socio-technical systems, has underpinned new technologies in the area of intelligent energy management, and made Professors Nick Jennings and Alex Rogers trusted sources of advice for energy policymakers, key stakeholders and industrial researchers. The work has had an economic, environmental and societal impact: it has shaped R&D strategies of leading British companies like BAE Systems and Secure Meters; the launch of iPhone apps and websites have supplied private and industrial users with personalised data regarding their energy use, resulting in cost savings and reductions in carbon emissions; it has enabled charities to provide energy-saving advice to households directly; and has won an international technology showcase competition leading to a spinout and commercialisation of research.
The impacts from over 20 years bioenergy research at Aston University, have been through influence and support for businesses to generate and use environmentally advantageous sources of power, fuels and chemicals. Pilot scale systems that exploit pyrolysis and gasification of biomass residues and renewable feed-stocks are operational. The EU, UK and local governments have developed policies with the Unit's advice on the potential of bioenergy for power generation and waste reduction. Technical and business advice have been provided, a new company formed, investments made in new business directions by SMEs and large multinational companies. This has generated new employment opportunities in consultancy, design and manufacture of systems, social and environmental benefits, along with greater public awareness.
Implementation of photonic quasi-crystals on light emitting diodes (LEDs) can produce more light using less energy. This technology was brought to the global market via the successful commercialisation of laboratory devices derived from research in nanophotonics and the subsequent development of photonic quasi-crystals by a multi-disciplinary team from the University of Southampton. The intellectual property of the technology was acquired and adopted in 2008 by Luxtaltek Corporation, a global manufacturer of LEDs. In the period 2008-2012 Luxtaltek Corporation, made total profits of £35 million utilising the photonic quasi-crystal LED technology, employing more than 300 people in its production facilities.
Interdisciplinary research on a new class of organo-metallic light emitting polymers showed that they could produce white light very efficiently. A consortium of the University and Industry (predominantly Thorn Lighting, the largest lighting manufacturing employer in the North East) developed and patented these into a viable alternative to mercury vapour fluorescent lights with a £4.3M grant from the DTI with matched funding from industry. The companies are investing in scaling this up to a full commercial supply chain, supported by a £4M grant from the Technology Strategy Board. The success of the project helped BIS secure £20.5M to support Plastic Electronics in the UK, creating 26 jobs, and was cited as a factor in the Thorn decision not to close down its North East site, safeguarding 600 jobs.
The impact is in the ERPE design of protocols which are subsequently used for evaluation and comparison of the performance of tidal energy converter designs. Researchers within the UK Centre for Marine Energy Research (UKCMER) at ERPE have led much of the fundamental and applied research that has supported the commercialisation of tidal energy technologies through the establishment of new international test standards and protocols.
ERPE researchers have regularly provided evidence which has influenced policy change in marine energy development in the UK and internationally with many ERPE graduating PhD's, subsequently employed in the marine energy sector.
The anærobic production of gas from waste — or biogas — is an important renewable energy source and means to prevent the release of methane, which is a powerful greenhouse gas. Exploitation of biogas is hampered by traces of siloxanes and H2S, which damage engines through the formation of SiO2, SO2 and H2SO4 during combustion. Research at Sussex in collaboration with PpTek Ltd (engineers of purification technology) has expanded the scope of current purification technology, meaning that biogas systems can be installed in a range of new sites. This has led to a strong increase in the commercial activity of the company, with turnover increasing from £910,000 in 2008 to £1.95m in 2012-13 and half year figures suggest turnover of at least £3m 2013-14 with £4.3m predicted for 2014-15.