Similar case studies

REF impact found 8 Case Studies

Currently displayed text from case study:

Fuel cell research powers zero-emission vehicles

Summary of the impact

Research in Proton Exchange Membrane Fuel Cells at Loughborough University (LU) has led to commercial and innovative impacts on a global scale which have included the development of the world's first purpose-built hydrogen fuel cell motorbike, the world's first manned fuel cell aircraft and a zero emission fuel cell hybrid London taxi, with major international companies, such as Suzuki, Boeing and Lotus. These developments have arisen due to the creation of the spin out company Intelligent Energy (IE). The company currently employs some 350 personnel, has a total shareholder investment over £100M and was valued at $0.5B in 2012.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Materials Engineering

Intelligent Energy: A $500M Loughborough spin out company

Summary of the impact

Electrochemistry research in the Department of Chemistry (and associated research in Aeronautical and Automotive Engineering) at Loughborough University (LU) since 1993 has led directly to the development of a new generation of clean power systems based on advanced fuel cell technology. This resulted in the creation of a spinout company based on a license awarded by LU: Advanced Power Sources Limited (APS) in 1995. Intelligent Energy (IE) Limited (founded in 2001 upon the acquisition of APS), has a global presence: a workforce of over 350 highly skilled employees, significantly advanced technology, and investment in R&D. Environment improvements have been achieved through introduction of zero-emission fuel cell systems.

Submitting Institution

Loughborough University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Materials Engineering

New Technologies for Electric Vehicles

Summary of the impact

Fundamental work on transmission and power management systems for electric vehicles has resulted in local and national impact with emerging international reach. Computer simulation and rig-based prototype modelling has shown that it is possible to improve overall energy consumption levels by around 5 to 12 % by using a variable ratio gearbox within an electric vehicle. A local company, AVID Vehicles Ltd have demonstrated the potential of this work in the conversion of a Nissan Note supplied by Nissan Motors UK Ltd into an electric powered car. This, and related, work on hybrid vehicles has gained international recognition and has been used as the basis for further developments, including regional impact with Sunderland Council, and influencing regional strategy.

Submitting Institution

University of Sunderland

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

The behaviour of hydrogen in materials

Summary of the impact

This case study focuses on the use of hydrogen in a range of applications, developing the following techniques:

  • Automated and precise measurement of the magnitude and kinetics of gas/vapour absorption in materials at controlled pressure and temperature;
  • Methods for analysing structural changes during cycling of hydrogen storage materials, in particular in situ neutron diffraction;
  • Methods for the regeneration of a palladium catalyst used in the production of hydrogen peroxide;
  • Understanding the behaviour of hydrogen isotopes in palladium in relation to hydrogen isotope separation for fusion applications;
  • A surface coating technique that stops hydrogen permeation through metals;
  • Exploring the use of hydrogen storage for use with hydrogen/fuel cell cars using isotherm analysis, ab initio simulations and neutron scattering techniques;

Demonstrating impact in the commercial application of the techniques in the energy, environment and chemical industries; resulting in commercially viable processes and products, generating economic benefit.

Submitting Institution

University of Salford

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Helping to create Ashwoods Lightfoot® and enable fleet managers to reduce the fuel costs and CO2 footprint from 2,500 vehicles

Summary of the impact

Economic impact

  • Design of a new and award winning product called Lightfoot® that gives reductions of at least 10% in fuel use and CO2 emissions.
  • The creation of a new business, Ashwoods Lightfoot® and three new jobs, with a sales value to date in excess of £625,000 and a subscription base of over £10,000 per month.
  • Economic performance of 200 vehicle fleets, including six major operators, has been improved by 2,500 installations of the system, saving over £83,000 per month in fuel costs.

Environmental impact

  • Saving an estimated 2,000 tonnes of CO2 per year.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Psychology and Cognitive Sciences: Psychology

A 60% reduction in diesel use: the impact of optical diagnostics on dual-fuel engines

Summary of the impact

Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Regenerative Engine Braking Device for Buses and Other Commercial Vehicles

Summary of the impact

Prof Zhao's development of an innovative hybrid engine RegenEBD was exploited by its industrial partner, Guangxi Yuchai Machinery Company (Yuchai), the largest bus engine manufacturer in China holding 80% of the domestic market. The first RegenEBD engine buses were operated in Yulin city, where Yuchai is based, in 2011. Yuchai confirmed that these buses have demonstrated notable fuel savings of 4.7-10% (1,100-2,200 litres of fuel saving), equivalent to 3.6-7.2 tonnes of carbon saving per vehicle per year. This led Yuchai to re-align their manufacturing strategies and development efforts for 3 years (2011-2013), investing significant resources to begin manufacturing and retrofitting of RegenEBD engines in 2014. They have employed over 30 new engineers to develop and manufacture RegenEBD and purchased equipment for RegenEBD engine testing and operations. Yuchai expects that hundreds of buses equipped with RegenEBD will be on the road by 2020.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Mechanical Engineering, Interdisciplinary Engineering

Enhancing industrial capability to innovate in vehicle design, for commercial, societal and environmental benefit

Summary of the impact

Vehicle and mobility design research carried out at the Royal College of Art (RCA) since 1993 has resulted in industrial innovation in vehicles and transport, both nationally and internationally, enhancing industry's ability to provide commercial, societal and environmental benefits between 2008 and 2013. The areas in which we are claiming impact include accessible, user-centred transport (Impact 1); future visions of public service vehicles and systems (Impact 2); and innovation in vehicle design for changing technologies (Impact 3). These impacts are produced through design and consultancy. Corroboration of impact takes the form of public records of achievements, and authentication by manufacturers.

Submitting Institution

Royal College of Art

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Societal

Research Subject Area(s)

Information and Computing Sciences: Information Systems
Engineering: Civil Engineering

Filter Impact Case Studies

Download Impact Case Studies