Log in
Research within the Building Research Establishment's sponsored Centre for Innovative Construction Materials (CICM) at the University of Bath has allowed the life of concrete structures to be extended through developing (a) proper methods for assessing existing capacity and (b) the means to increase capacity where necessary. This has prevented buildings and bridges (managed, for example, by large asset owners such as the Highways Agency and Network Rail) from being condemned as unfit for purpose, resulting in vast savings in reconstruction costs and preventing disruption to infrastructure users. The work has led to the researchers being commissioned to write guidance documents that are routinely used by infrastructure owners and consulting engineers worldwide. Over the course of the last eight years this has resulted in several £millions of savings to infrastructure owners and the UK economy.
University of Nottingham research into a composite design for steel beams and floor slabs has resulted in environmental and economic benefits and an important change in the construction industry. The work has reduced the weight of beams and the overall tonnage of buildings, enabled easier installation and improved structural strength. More than 40 projects, with a total combined floor area in excess of 380,000m2, have used the technology since 2008, and the method's market share has been estimated at up to 60%. The breakthrough has facilitated partnerships between steel frame designers and precast flooring manufacturers, with the value to the latter alone put at more than £5M.
£80m has been saved since 2008 by London Underground (LU) and yet more by bridge owners in the UK as a direct result of using the Arching Action (AA) enhancements in strength predicted by our research. The associated disruption would have resulted in enormous congestion, losses economically of £ billions and negative social impact. Multi-million $ savings have also accrued in North America from the use of corrosion free deck bridges, which have minimum maintenance, as has our innovative flexible concrete arch (patented 2004) which has been used for over 40 FlexiArch bridges (£15m in contracts) since 2008.
ERPE research has made major impacts on the design and operation of concrete infrastructure through design, corrosion investigation/residual life prediction and non-destructive testing (NDT). New interpretations of ground penetrating radar (GPR) data have impacted international practice through: the American Concrete Institute (ACI) document on NDT of Concrete, ACI 228.2r2013; fib Model Code 2010, ISBN:978-3-433-03061-5; a corrosion monitoring device; and "GprMax", the world's most widely used and acclaimed GPR freeware.
The financial impact of the underpinning ERPE research is estimated at £100M p.a. on infrastructure maintenance savings worldwide.
The key impact is in the definition of best practice for the design of joints, components and structures comprised of glass fibre reinforced polymers (GFRP, also known as fibreglass). The primary beneficiaries are (i) professional civil and structural engineering designers of GFRP structures; (ii) pultruders and composites fabricators due to continually expanding use of GFRPs in construction; and (iii) the general public through the provision of sustainable structures.
In particular, Lancaster's research on pultruded GFRP materials and structures has contributed to the EUROCOMP Design Code and Handbook (1996), the world's first limit state design code for GFRP structures. This code has influenced GFRP structural design globally ever since, both pre and post-2008. Additionally, post-2008, EUROCOMP has triggered and influenced development of new European and Japanese design codes, in turn impacting designers, fabricators and the public in those geographical regions. Lancaster's research has influenced the US Load and Resistance Factor (LRFD) Prestandard (2010) and ASCE's Manual No.102 on bolted and bonded joints (2011) two codes and guidelines that will accelerate the US's application of composites in construction.
Thus, the use of Lancaster's research in these codes and guidelines has supported the construction of fibreglass-based civil structures across the globe as well as the delivery of individuals with the analysis and design skills needed by the composites industry.
Over a period of 20 years, Professor Mangat and colleagues in the Materials and Engineering Research Institute's (MERI's) Centre for Infrastructure Management have developed significant expertise of concrete materials and structures related to deterioration, repair and maintenance of infrastructure. This body of research has led to professional practice and economic impacts related to repair selection, asset management systems, curing systems and novel repair/building materials. Mangat's expertise in concrete deterioration, its remediation and repair has been developed into commercial software systems for bridge and asset management and the national, professionally accredited training course for bridge inspectors/engineers. In the REF impact period, bridge management software has been adopted by over 30 UK local authorities and training delivered to 392 bridge management professionals. Commercialisation of two of Mangat's research innovations, alkali activated materials (AAMs) and low voltage accelerated curing systems (LOVACS), has achieved direct sales of £0.5m and development of the spin-out Liquid Granite Ltd. Additionally, his corrosion protection systems have been adopted by engineering consultants Mott MacDonald, enabling them to win commissioned corrosion-remediation works of over £1m
Research led by two members of the University of Warwick's School of Engineering strongly influenced the planning, drafting and technical content of nearly all of Eurocode 4, one of ten European civil engineering standards. Eurocode 4 covers composite structures made of steel and concrete. Since 2010 this standard has been in force in all countries of the European Union (EU) and the European Free Trade Area (EFTA). The Eurocodes are the only set of design rules for publicly-funded structures on land that satisfy national building regulations throughout the EU and EFTA. Their impact on structural engineering is wide-ranging and growing, the principles and methodology contained within these Eurocode 4 will be the basis of engineering design teaching for Chartered Engineers throughout the EU.
This Alliance project demonstrated, through the exploration of flexible formwork techniques, that it is possible to use concrete in a much more diverse, sustainable and quality-controlled way than in 20th century architecture, achieving a 25-35% reduction in the carbon footprint of concrete constructions. It has engendered an attitudinal change within the global construction industry, with one US industry professional saying "Prior to this research, concrete was often perceived of as a harsh, aggressive material. Experimentation with fabric forming has shown that it doesn't have to be so". The research has led to two Knowledge Transfer Partnerships, an award-winning Chelsea Flower Show entry and the proprietary application of the technology in other forms of construction. It has also stimulated partnership working with government and schools; collaboration described as the "Curriculum for Excellence at its best".
By ensuring the durability of notable concrete structures in China, such as the Bird's Nest National Stadium Beijing, Dayawan Nuclear Power Station, Harbin-Dalian Railway Bridges, Qingdao Bay Bridge and Beijing-Tianjin Railway Bridges using Autoclam Permeability System and Permit Ion Migration test, developed by Queen's University Belfast (QUB) and sold by a QUB spin-out Amphora Non-destructive Testing Ltd., the savings in future repair costs are estimated to be hundreds of millions of Chinese Yuan (RMB) (the repair expenditure for the three-year period 2009-'11 was RMB 10.2 billion).
Research on permeability and diffusivity testing of concrete on site since 1993 has led to the incorporation of both the Autoclam and the Permit in a corporation standard issued by the Central Research Institute of Building and Construction (CRIBC), China and the test protocol of Permit in a Chinese railway standard.
The training of construction professionals (including more than 200 senior managers from the Chinese construction industry) since 2008 has impacted on improved sales of Autoclam Permeability System and Permit Ion Migration Test, securing around £500k commercial income, and generating new employment in the UK. Since 2008 these test instruments have been sold to 12 countries.
The development of standards and design guides at a European level for composite concrete floors with cellular steel beams has been informed by research undertaken in the Fire Safety Engineering Research and Technology centre (FireSERT), Built Environment Research Institute. Central to the impact is the establishment of technical rules for the fire safe design of buildings constructed with the use of cellular beams. Research at the University of Ulster has demonstrated that the use of unprotected cellular beams can reduce the cost of fire protection. This research was corroborated by a major fire test conducted at an international scientific conference hosted by FireSERT in February 2010. Design guidance for innovative safe structures in fire scenarios have been published in leading journals with high impact factors.