Log in
Research at the UCL Institute of Child Health (ICH) has led to the successful treatment of children with primary immunodeficiency diseases for whom there was little chance of "cure" by the only other possible means: haematopoietic stem cell transplantation (HSCT). Beginning in 2002, we have treated 32 patients with four different primary immunodeficiency disorders. In total we have treated 12 patients with severe combined immunodeficiency (SCID-X1), 13 patients with adenosine deaminase deficient severe combined immunodeficiency (ADA-SCID), 5 patients with chronic granulomatous disease (CGD) and 2 patients with Wiskott-Aldrich syndrome (WAS). Most of the patients have been successfully treated and are at home, off all therapy. We are now starting to develop this technology to treat a wider range of related disorders.
Professor Dickson's research group at Royal Holloway has pioneered the enabling technologies for the development of genetic therapies for the incurable disease Duchenne Muscular Dystrophy (DMD). Dickson's group has, (i) cloned replacement copies of the normal DMD gene, (ii) identified a natural substitute for the defective gene, and (iii) demonstrated that synthetic DNA can be used to correct the defective gene. The work has created impact on health and welfare through the development and clinical trials of a series of investigational medicinal products for this hitherto incurable disease, several clinical trials, and impact on commerce through industrial investment and licensed patents.
Ataxia telangiectasia (A-T) is an inherited disease affecting multiple systems in the body, causing severe disability and death. Work led by Professor Malcolm Taylor at the University of Birmingham has been central to the biological and clinical understanding of this disease, from the identification of the gene responsible to the clarification of related conditions with different underlying causes. As a result of this work, within the 2008-13 period, his laboratory has been designated the national laboratory for clinical diagnosis of A-T — a service also offered internationally — and has also changed national screening policy for breast cancer, following his confirmation of the increased risks of A-T patients and those who carry a single copy of the gene for this type of tumour. Furthermore, he has contributed in a major way to patient support for this condition.
Research conducted at UCL/UCLH over the last 20 years has enabled the identification of adults with acute leukaemia who are most likely to benefit from the use of stem cell transplantation, i.e. those with acute leukaemia in first remission. The treatment is highly intensive, potentially toxic and expensive high-dose chemotherapy followed by haemopoietic stem cell transplantation, and is inappropriate for some patients. The work has made a major contribution to the development of guidelines worldwide for the treatment of this disease. Improved patient selection for transplantation results in improved survival, less toxicity with improved overall quality of life, and a more appropriate use of NHS resources.
UCL spin-out company BioVex was launched in 1999 to exploit research undertaken by David Latchman at the UCL Medical Molecular Biology Unit, Department of Biochemistry. (This department is now part of the Department of Structural and Molecular Biology, UCL/Birkbeck and Latchman is now Master of Birkbeck.) Biovex worked to develop inactivated herpes simplex viruses as therapies, and a promising dual-action oncolytic vaccine for solid tumours, OncoVEXGM-CSF, was taken into successful Phase II trials. In 2011 the company was bought out by Amgen for $1 billion — still the largest ever cash sale of a UK biotech — and Amgen has now taken this virus into a Phase III trial with promising initial results.
Diagnostic tests have been successfully developed for identification of the cause of erythrocytosis, particularly in patients with unexplained forms of this rare disease. A diagnostic service with worldwide reach was developed for the genetic characterisation of patients that carry mutations identified by the Queens's group. It deals with approximately 100 samples per year referred for investigation for this rare disease from the UK, Europe and further afield. Proper diagnosis helps in management of patients with erythrocytosis where the problem is not mutation in one of the familiar causative genes. A pan-European web-based database has been established to collect information on long-term outcomes to inform patient management.
Researchers from the University of Oxford identified the novel human protein Forkhead box transcription factor 1 (FOXP1) and showed it to be an important prognostic biomarker in cancer. Expression of FOXP1 can distinguish those patients with diffuse large B-cell lymphoma (DLBCL) who are at high risk of disease progression, making it possible for clinicians to target more intensive therapy to this group. DLBCL accounts for one third of lymphomas and is the seventh commonest form of cancer. The anti-FOXP1 monoclonal antibody developed by Oxford University is now used worldwide in clinical diagnostics.
Research at Queen's University Belfast has led to the successful development and commercialization of a DNA chip technology platform that facilitates the rapid discovery and validation of new diagnostic tests in cancer. A spin out company has been established called Almac Diagnostics that currently employs 85 staff, thereby significantly contributing to the knowledge based economy in Northern Ireland. Almac has used this technology to develop and validate a number of genomic tests that have been successfully licensed to established US based diagnostic companies, thereby securing long term revenue streams. Almac is now recognised internationally as a worldwide industry leader in this area.
The Basidio Molecular Toolkit developed at the University of Bristol has enabled the pharmaceutical industry to achieve the efficient genetic manipulation of a group of basidiomycete fungi (mushrooms and toadstools) and thereby produce medically important antibiotics and proteins cost-effectively. For example, GlaxoSmithKline's collaboration with the Bristol team saved 70,000 hours of research and development in getting a natural antibiotic called pleuromutilin to market. In China, the system is used to produce medicinal anti-cancer proteins from fungi in commercially viable quantities. In addition, government agricultural research programmes in the US and Ireland have adopted the toolkit to increase the efficiency of their search for disease-resistant crops in the interests of farmers, consumers and economies.
Impact on society (non-profit organisations) and public attitudes: The discovery of the reversibility of Rett syndrome in a mouse model for the disease has changed attitudes and awareness amongst families of sufferers and has led directly to the formation of two new charities: the Rett Syndrome Research Trust (US) and ReverseRett (UK).
Impact on health and welfare: Two new clinical interventions are being trialled with Rett syndrome patients.
Beneficiaries: Families living with Rett syndrome worldwide.
Significance and Reach: The research has given hope to thousands of families world-wide and has prompted an active philanthropic drive to fund research into a cure based on the UoE findings. The RSRT has raised $15 million since 2008. The incidence of Rett syndrome is 1 in 10,000 females. Some 16,000 individuals have Rett syndrome in the USA, and an estimated 2,400 in the UK.
Attribution: The research was carried out at UoE led by Adrian Bird. The critical underpinning paper was the UoE demonstration of reversibility (2007).