Log in
Meningococcal meningitis is a life-threatening acute disease affecting 1.2 million people every year. Accurate and rapid diagnosis is essential for optimal patient response; however, bacterial culture tests are slow and undermined by the immediate administration of antibiotics, resulting in sterile cultures.
The Surrey team developed a rapid, non-culture-based diagnostic test for meningitis and septicaemia: this test is now routinely used for diagnosis of meningococcal disease worldwide, and was also instrumental in the implementation and monitoring of control measures for the disease, such as life-saving vaccination campaigns. Together these have contributed to the halving of adult mortality rates from meningitis worldwide.
Research conducted by Professor Jo Bradwell at the University of Birmingham provided the basis of the commercially available diagnostic test Freelite®, which quantifies free immunoglobulin light chains in serum and was the first and only assay for the diagnosis and monitoring of Multiple Myeloma (MM). MM is a cancer of immunoglobulin producing plasma cells in the bone marrow. Freelite® has markedly improved the diagnosis and management of MM, is helpful in the diagnosis of all B cell lymphoid neoplasias and provides prognostic information for premalignant conditions present in over 3% of people over 50 years of age. Freelite was commercialised by the University of Birmingham spinout company, the Binding Site, which has achieved worldwide sales, with over 360,000 tests being sold per month in 90 countries and an ongoing 25% annual growth in sales. The company provides annual revenue of £55m and employment for 620 people in the UK and abroad. An improved second generation of tests has been developed by Professor Mark Drayson at the University of Birmingham, which has been commercialised by a second University spinout company Serascience, which started marketing a point of care free light chain diagnostic test worldwide in April 2013.
Research at the University of Liverpool (UoL) has developed and proven a straightforward diagnostic test method for bacterial blood infections. This was urgently needed as sepsis is a medical emergency that lacks adequate and rapid diagnostic tests particularly for low cost early detection. UoL's research has demonstrated that a simple optical test that can be conducted during routine testing of coagulation is an effective diagnostic, prognostic and monitoring marker for sepsis that can be routinely applied in clinical settings. There are now established UK and international laboratory standards in place. In 2010 a spinout company was formed to exploit four patents and incorporate the technology into a point-of-care device suitable for all clinical settings. The company, Sepsis Ltd, has attracted £1.45m of investment.
Invasive pulmonary aspergillosis (IPA) is a frequently fatal disease of haematological malignancy patients, caused by fungi from the genus Aspergillus. Dr Christopher Thornton has developed and commercialised a novel point-of-care test for the diagnosis of IPA with an Aspergillus-specific monoclonal antibody (mAb) JF5 generated using hybridoma technology. Using this mAb, he has developed a lateral-flow device (LFD) for the rapid detection of Aspergillus antigen in human serum and bronchoalveolar lavage fluids (BALf) that signifies active infection. Commercial exploitation of the patented technology has been met through the establishment of a University of Exeter spin-out company, Isca Diagnostics Limited.
Chronic lung infections due to Pseudomonas aeruginosa are the major cause of morbidity and mortality associated with cystic fibrosis. Some strains of P. aeruginosa transmit between patients (epidemic strains). The Winstanley group, at the University of Liverpool (UoL) since 1999, in collaboration with clinicians in Liverpool, has developed diagnostic PCR assays for identification of the most widely reported UK epidemic strains of P. aeruginosa. The NHS clinicians use these tests to make informed decisions about patient segregation leading to markedly reduced incidence of LES infections. Researchers internationally have adopted the UoL research results and strategy to tackle other transmissible strains and modify clinical procedures.
The MRC Prion Unit was established at UCL in 1998 to address national public health issues posed by bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD). One of our key strategic priorities has been to create a validated blood test for vCJD in order to protect public health through the screening of donated blood and organs for transplantation. The blood test we have developed has been demonstrated to detect infection in over 70% of patients with vCJD with, to date, 100% specificity and is now in use at the National Prion Clinic for evaluation.
Impact: Health and welfare; policy in the form of national and international guidelines; diagnostic service; engagement with patient groups.
Significance: UoE-formulated diagnostic criteria adopted by the World Health Organisation (WHO), the European Centre for Disease Prevention and Control (ECDC) and US Centers for Disease Control and Prevention (CDC), enable reliable case ascertainment and longitudinal study of disease trends. The UoE Creutzfeldt-Jacob Disease Unit acts as an international reference centre for diagnosis. Case ascertainment has improved.
Beneficiaries: Patients with prion disease and their families, policy-makers, the NHS, charities.
Attribution: The UoE CJD Unit led the work with international collaborators.
Reach: Worldwide; diagnostic criteria are WHO-endorsed and have been adopted worldwide. Pooling of data across Europe has enabled assessment of 11,000 cases of sporadic CJD.
Clostridium difficile infection (CDI) is a frequent and often fatal hospital-acquired infection. In the past, the diagnosis of CDI has been inadequate. This has had serious consequences for the management and control of infection in healthcare settings. Planche and colleagues at St George's have developed and validated a new diagnostic algorithm for CDI. This has led to policy changes in the UK Department of Health, and amongst European and US authorities, and to practical changes in the way CDI is diagnosed. Its implications for the successful understanding and management of this infection have been profound.
Since its discovery in the 1980s, avian metapneumovirus (AMPV) has spread in poultry populations worldwide with major adverse health and food security implications for commercial chickens and turkeys. Research at the University of Liverpool (UoL) led to the registration of a live vaccine in 1994 which has played a global role in AMPV control, thereby safeguarding the supply of poultry meat and eggs. Recent research and development at the UoL has identified key control measures, relating to vaccine application, vaccine selection, efficacy and safety, which have had a significant impact on poultry health and consequently, poultry producers and consumers. In particular, demonstration that live AMPV vaccines can revert to virulence, that vaccine type applied influences field protection and that continuous use of a single vaccine can influence circulating field strains, has resulted in UoL leading policy making with regard to current AMPV vaccine protocols.
A long programme of research By Neil Avent has led to the development of powerful screening and diagnostic measures. It has enabled the implementation of molecular blood grouping and Non- invasive prenatal diagnosis (NIPD) into clinical use. The work began with research that took the lead in developing the commercially available products BLOODchip and MLPA, used extensively in the management of difficult to transfuse patients. This was developed into investigations of NIPD of fetal blood groups (particularly RhD), and through EC funding, drove workshops to establish non-invasive RhD typing as routine in the clinical management of haemolytic disease of the fetus and newborn. This work has shaped the standardisation of NIPT for fetal Rhesus D (RhD) and fetal sexing via External Quality Assessment (EQA) and the EC network Eurogentest.