Log in
A new hybrid analysis method, arising from research at the University of Cambridge Department of Engineering (DoEng), unites Statistical Energy Analysis (SEA) with Finite Element Analysis (FEA) to enable full-spectrum vibro-acoustic analysis of large and complex structures with modest computing resources for the first time. The method also allows for uncertainties in the manufacturing process. This research breakthrough has been exploited by ESI Group (ESI), which is a company that provides virtual prototyping solutions, in commercial software licensed to more than 600 companies across a wide range of industrial sectors to improve product design and performance with regard to vibrations and noise. Typical applications include the prediction and reduction of interior noise in automotive and aerospace structures, and the assessment of launch- induced vibration levels in satellite structures.
Strategic Environmental Assessment (SEA) research conducted in the Spatial Planning and Impact Assessment Research Group (SPIA) since 2004 has examined how policy makers can support a high level of environmental protection through integration of environmental considerations into the preparation and adoption of policy. Research has made a key difference to the capacity of policy makers to shape more environmentally sustainable policy through evidence based policy making which is informed by environmental assessment procedures and techniques. Research findings have fed into guidance and other documents of national and international organisations in relation to designing environmentally sustainable policy.
The impact arises from the study of extreme ocean waves and their interaction with marine structures. It is relevant to the offshore, shipping, coastal and marine renewables industries and has been both economic and regulatory, involving:
(a) The establishment of revised guidelines for the design of new structures / vessels.
(b) Enhancing best practice, both from an economic and a safety perspective.
(c) Reducing the uncertainty in critical design issues, thereby improving overall reliability.
(d) Enabling "end-of-life" extensions for existing structures.
(e) Facilitating the effective decommissioning of redundant structures.
(f) Contributing to the development of new industrial R&D equipment, thereby assisting specialist UK manufacturers to secure international orders.
Designs for complex structures like cars, aeroplanes and modern buildings suffer from unpredictable vibrations that lead to anything from irritating noises to dangerous structural failures. Predicting the distribution of vibrational energy in large coupled systems is an important and challenging task of major interest to industry. Until recently there was no reliable method to predict vibrations at the important mid-to-high frequency ranges.
There is a need to gain accurate predictions of vibrations at the design stage. However, previous techniques developed in the context of Quantum Chaos are too cumbersome to be used in a fast-moving commercial design setting. Bandtlow has used his expertise to develop a novel method that computes a very close approximation to these predictions but in a reasonable time. Bandtlow's method of constructing an efficient mathematical model for spectral vibrations has informed inuTech's latest product and led to enhanced performance of automobiles and aircraft.
Research at the University of Bradford has resulted in more accurate and efficient predictions of traffic sound propagation and faster determination of sound reflection effects, enabling more effective design and positioning of noise barriers. Software derived from our research is used in 40 countries to map traffic noise and plan evidence-based targeting of Noise Reduction Devices (NRDs), thus increasing efficiency and sustainability. Beneficiaries include the public, through improved quality of life from reduced noise pollution from transport and wind turbine sound, and governments and public administrations through policy tools to influence noise management. The reach of our research is demonstrated by its incorporation into national and EU-wide policy and guidance on sustainability in design and use of NRDs.
Research at the University of Southampton has redefined understanding of the potential rapidity of sea level rise above the present, and of the relationship between climate change and sea level. It has informed the "worst-case scenario" for climate change flood risk assessment in the UK as well as key adaptation policy documents throughout Europe, North America and Australasia. Impact generation occurs mainly though active public engagement, which ensures widespread international media attention, and through direct interaction with the Environment Agency (EA) and UK Climate Impact Programme (UKCIP) which have now joined the research group in a £3.3 million consortium project to better define the "worst case scenario".
It is well-known that certain bridges are susceptible to potentially dangerous uncontrolled vibrations; recent examples include London's Millennium Bridge and the Volga Bridge in Volgograd. Correcting such problems after the construction of the bridge can be extremely expensive and time-consuming. Research in the Department of Mathematical Sciences at the University of Liverpool has led to a novel approach for predicting such behaviour in advance and then modifying the bridge design so as to avoid it. During the period 2011-12 this research has been incorporated into standard design procedures by industrial companies involved in bridge design. There is an economic impact for the companies concerned (avoiding costly repairs after bridge construction) and a societal impact (improvements in public safety and also avoiding the inconvenience of long-term closure of crucial transport links).
The research is based on a novel, highly non-trivial approach that has been developed to study properties of elastic waves in complex engineered structures with a multi-scale pattern. The work has been taken up by the industrial construction company ICOSTRADE S.R.L. Italy, whose design engineer Dr Gian Felice Giaccu integrated the innovative research ideas into their standard design procedures for complex structures such as multiply supported bridges. Novel designs of wave by- pass systems developed by the Liverpool group have also been embedded in standard algorithms by the industrial software company ENGINSOFT, in the framework of a project led by their project manager Mr. Giovanni Borzi.